• Title/Summary/Keyword: Design Strength Limit State Function

Search Result 18, Processing Time 0.027 seconds

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

Minimum Thickness of Long Span RC Deck Slabs for Composite 2-girder Bridges Designed by KL-510 Load Model (KL-510 하중모형을 적용한 강합성 2거더교 RC 장지간 바닥판의 최소두께)

  • Park, Woo-Jin;Hwang, Hoon-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2014
  • The minimum thickness of long-span deck slab is proposed by checking the limit state according to the Korean highway bridge design code(limit state design). Both minimizing thickness and ensuring safety of deck slab are important design factors to increase a competitive price of the long span deck slabs. The required thicknesses for satisfying flexural capacity, preventing punching shear failure and limiting deflection were calculated by considering KL-510 load model which has increased total load compared to DB 24 from 432 kN to 510 kN. The results of the required thickness for various limit states were compared to propose the minimum thickness as a function of span length of deck slabs. The proposed minimum thickness is influenced by satisfying flexural capacity and limiting deflection. It turns out to be similar compared to the results of the previous study by ultimate strength design method even if the live load model was increased in total weights.

Commercial Finite Element Program-based Reliability Analysis of Dam Structures (상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석)

  • 허정원;이정학
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Analysis of Prestress Effect and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 프리스트레스 효과 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.214-224
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for optimized standard 25m~45m PSSC composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for stress and flexural strength. The reliability index for standard PSSC composite bridge which is designed to satisfy the allowable stress for flexural strength are higher than 3.5 which is required reliability indexes on American code for LRFD. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for flexural strength.

An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members (펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발)

  • Joo H. J.;Jung J. H.;Lee S.;Yoon S. J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

Development and Field Application of Apparatus for Determination of Limit State Design Strength Characteristics in Weathered Ground (한계상태설계법 지반정수 산정을 위한 풍화대 강도특성 측정장치의 개발 및 현장적용에 관한 연구)

  • Kim, Ki Seog;Kim, Jong Hoon;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.164-179
    • /
    • 2020
  • Applying the limit state design method to geotechnical structures, accuracy and reliability of its design are mainly affected by parameters for geotechnical site characteristics, such as unit weight, Poisson's ratio, deformation modulus, cohesion and frictional angle. When the structures are located in weathered ground, especially, cohesion and frictional angle of ground are closely related with decision of parameters for structures' load and ground's resistance. Therefore, the accurate determination of these parameters, which are commonly obtained from field measurement, such as borehole shear test, are essential for optimum design of geotechnical structures. The 38 case studies, in this study, have been analyzed for understanding the importance of these parameters in designing the ground structures. From these results, importance of field measurement was also ascertained. With these evaluations, an apparatus for determining the strength characteristics, which are fundamental in limit state design (LSD) method, have been newly developed. This apparatus has an improved function as following the ASTM suggestion. Through the field application of this apparatus, the strong point of minimizing the possibility of error occurrence during the measurement has been verified and authors summarized that the essential parameters for LSD can be qualitatively obtained by this apparatus for determination of strength characteristics of weathered ground.

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Development of optimum design curves for reinforced concrete beams based on the INBR9

  • Habibi, Alireza;Ghawami, Fouad;Shahidzadeh, Mohammad S.
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.983-998
    • /
    • 2016
  • Structural optimization is one of the most important topics in structural engineering and has a wide range of applicability. Therefore, the main objective of the present study is to apply the Lagrange Multiplier Method (LMM) for minimum cost design of singly and doubly reinforced rectangular concrete beams. Concrete and steel material costs are used as objective cost function to be minimized in this study, and ultimate flexural strength of the beam is considered to be as the main constraint. The ultimate limit state method with partial material strength factors and equivalent concrete stress block is used to derive general relations for flexural strength of RC beam and empirical coefficients are taken from topic 9 of the Iranian National Building Regulation (INBR9). Optimum designs are obtained by using the LMM and are presented in closed form solutions. Graphical representation of solutions are presented and it is shown that proposed design curves can be used for minimum cost design of the beams without prior knowledge of optimization and without the need for iterative trials. The applicability of the proposed relations and curves are demonstrated through two real life examples of SRB and DRB design situations and it is shown that the minimum cost design is actually reached using proposed method.