• Title/Summary/Keyword: Desorption

Search Result 1,599, Processing Time 0.029 seconds

Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery (유증기 회수를 위한 VOCs 탈착에 미치는 온도, 압력 및 공기유량의 영향)

  • Lee, Song-Woo;Na, Young-Soo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1131-1139
    • /
    • 2013
  • Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature $25^{\circ}C$, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.

Desorption-Resistance of Hydrophobic Organic Compounds in Natural Soils

  • Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.26-29
    • /
    • 2001
  • Sorption/desorption Study was conducted to determine desorption-resistance hydrophobic organic compounds in natural soils with low organic carbon content. Sorption/desorption characteristics of chlorobenzene and phenanthrene for both PPI (Petro Processors, Inc. Superfund site) and BM (Bayou Manchac), soils were investigated. Desorption was biphasic including reversible and desorption-resistant compartments. The biphasic sorption parameters indicated the presence of appreciable size of desorption-resistant phase in these soils. A finite maximum capacity of desorption-resistant fraction (equation omitted) was observed after several desorption steps. The apparent organic carbon based Partition coefficient, K(equation omitted) was 10$^{4.92{\pm}0.27}$ for PPI soil and 10$^{4.92{\pm}0.27}$ for BM soil, respectively. The difference in K(equation omitted) was attributed to different characteristics in soil organic matter. The results suggest that desorption-resistance should be considered in remediation and risk assessments in natural soils and sediments.

  • PDF

Sorption and desoption behaviors of PAHs in soil and sediments

  • Wang, Qiliang;Shin, Sik;Song, Dong-Ik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.277-284
    • /
    • 2004
  • Batch experiments were conducted to investigate the sorption and desorption behaviors of PAHs (naphthalene, phenanthrene and pyrene) in soils. Three different soils montmorillonite KSF (foc =0.14%), masato (foc =0.08%), and diatomite (foc =0.007%) were investigated. The results of sorption-desorption experiment indicate that the sorption affinity of PAHs was in the order of montmorillonite > masato > diatomite. The Freundlich model was well fitted to the sorption and desorption data. Sorption affinity increased as loc increased. Desorption of PAHs from soils was biphasic composed of reversible and irreversible compartments. Desorption-resistance of phenanthrene in soils was also determined. The biphasic desorption model was used to explain desorption-resistance of phenanthrene in soils. The linear term represents reversible sorption fraction and Langmuinian-type term represents desorption-resistant fraction.

  • PDF

Desorption Characteristics and Bioavailability of Zn to Earthworm in Mine Tailings (광미내 Zn의 탈착 특성과 지렁이에 대한 생이용성)

  • Oh, Sang-Hwa;Shin, Won-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.38-52
    • /
    • 2011
  • Sorption and sequential desorption experiments were conducted for Zn using a natural soil (NS) in background status by aging (1, 30 and 100 days). The sorption isotherm showed that Zn had high sorption capacity but low sorption affinity in NS. Sequential desorption was biphasic with appreciable amount of sorbed Zn residing in the desorption-resistant fraction after several desorption steps. The biphasic desorption behavior of Zn was characterized by a biphasic desorption model that includes a linear term to represent labile or easily-desorbing fraction and a Langmuirian-type term to represent desorption-resistant fraction. The biphasic desorption model indicated that the size of the maximum capacity of desorption-resistant fraction ($q^{irr}_{max}$) increased with aging in NS. Desorption kinetics and desorption-resistance of Zn in the soils collected from mine tailings (MA, MB and MC collected from surface, subsurface soils and mine waste, respectively) were investigated and compared to the bioavailability to earthworm (Eisenia fetida). Desorption kinetic data of Zn were fitted to several desorption kinetic models. The ratio ($q_{e,d}/q_0$) of remaining Zn at desorption equilibrium ($q_{e,d}$) to initial sorbed concentration ($q_0$) was in the range of 0.53~0.90 in the mine tailings which was higher than that in NS, except MA. The sequential desorption from the mine tailings with 0.01M Na$NO_3$ and 0.01M $CaCl_2$ showed that appreciable amounts of Zn are resistant to desorption due to aging or sequestration. The SM&T (Standard Measurements and Testing Programme of European Union) analysis showed that the sum of oxidizable (Step III) and residual (Step IV) fractions of Zn was linearly related with its desorption-resistance ($q^{irr}_{max}$) determined by the sequential desorption with 0.01M Na$NO_3$ ($R^2$= 0.9998) and 0.01M $CaCl_2$ ($R^2$= 0.8580). The earthworm uptake of Zn and the desorbed amount of Zn ($q_{desorbed}$ = $q_0-q_{e,d}$) in MB soil were also linearly related ($R^2$ = 0.899). Our results implicate that the ecological risk assessment of heavy metals would be possible considering the relation between desorption behaviors and bioavailability to earthworm.

Behaviors of Desorption Agents During Removal of Cs From Clay Minerals and Actual Soil

  • Park, Chan Woo;Kim, Ilgook;Yoon, In-Ho;Yang, Hee-Man;Seo, Bum-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.39-49
    • /
    • 2021
  • The behaviors of various desorption agents were investigated during the desorption of cesium (Cs) from samples of clay minerals and actual soil. Results showed that polymeric cation exchange agents (polyethyleneimine (PEI)) efficiently desorbed Cs from expandable montmorillonite, whereas acidic desorption solutions containing HCl or PEI removed considerable Cs from hydrobiotite. However, most desorption agents could desorb only 54% of Cs from illite because of Cs's specific adsorption to selective adsorption sites. Cs desorption from an actual soil sample containing Cs-selective clay mineral illite (< 200 ㎛) and extracted from near South Korea's Kori Nuclear Power Plant was also investigated. Considerable adsorbed 137Cs was expected to be located at Cs-selective sites when the 137Cs loading was much lower than the sample's cation exchange capacity. At this low 137Cs loading, the total Cs amount desorbed by repeated washing varied by desorption agent in the order HCl > PEI > NH4+, and the highest Cs desorption amount achieved using HCl was 83%. Unlike other desorption agents with only cation exchange capabilities, HCl can attack minerals and induce dissolution of metallic elements. HCl's ability to both alter minerals and induce H+/Cs+ ion exchange is expected to promote Cs desorption from actual soil samples.

Analysis and Assessment by Thermal Desorption Method of Mixed Organic Solvents Collected on Activated Carbon(AC) and Activated Carbon Fiber(ACF) (AC 및 ACF에 포집된 혼합 유기용제의 열탈착 방법에 따른 분석 및 평가)

  • 원정일;김기환;신창섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.72-90
    • /
    • 2001
  • This study was conducted to evaluate desorption efficiencies accuracy and precision by $CS_2$ and thermal desorption method for polar and non-polar organic solvents collected on activated carbon(AC), activated carbon fiber(ACF), carbosieve SIII, materials tested were Methyl alcohol, n-Hexane, Benzene, Trichloroethylene, Methyl isobutyl ketone and methyl cellosolve acetate and six different concentration levels of samples were made. The results were as follows ; 1. Accuracy on kind adsorbent and desorption method was low. In case of $CS_2$ desorption solvent, Overall B and Overall CV on AC and ACF were 43% and 6.63%, respectively. In case of thermal desorption method, accuracy of thermal desorption method appeared higher than solvent desorption method by AC 18.0%, 3.54%, ACF 2.6%, 2.57%, Carbosieve SIII 13.7% and 1.97%, respectively. 2. In the concentration level III, accuracy of thermal desorption method on adsorbent was in order as follow ; ACF > Carbosieve SIII > AC in the methyl alcohol and Carbosieve SIII > ACF > AC in the rest of them all subject material and Concentration levels showed good precision at EPA recommend standard (${\leq}{\;}30%$) 3. DEs by type of organic solvent adsorbent and desorption method are as follows ; In the case that desorption solvent is $CS_2$, DE of Methyl alcohol is AC 47.5%, DE of all materials is ACF about 50%. In the case of thermal desorption method, DE of Methyl alcohol is AC 82.0%, ACF 97.4%, Carbosieve SIII 86.3%. DE of the later case is prominently improved more than one of former. In particular, Except that DE of EGMEA is ACF 88.5%, DE of the rest of it is more than 95% which is recommend standard MDHS 72. With the result of this study, in order to measure various organic solvent occurring from the working environment, in the case of thermal desorption method, we can get the accurate exposure assessment, reduce the cost, and use ACF as thermal desorption sorbent which available with easy.

  • PDF

HDTMA-Bentonite로부터 페놀류 화합물의 경쟁탈착

  • 신원식;김영규;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.15-18
    • /
    • 2001
  • Sorption/desorption studies were conducted to determine sorption/desorption characteristics of phenolic compounds (phenol and 4-chlorophenol) in organically modified natural bentonite. The cationic exchange capacity (CEC) of bentonite was exchanged with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the removal capacity of organic phenol contaminants dissolved in aqueous solution. This modification produces a change of the surface property of bentonite from hydrophilic to organophilic. The single-solute and bi-solute competitive adsorptions were performed In batch mode to investigate the removal of two toxic organic Phenols, chlorophenol and 4-chlorophenol on the HDTMA-bentonite. The adsorption affinity of the 4-chlorophenol was higher than phenol due to higher octanol:water partition coefficient (Kow). The single-solute and bi-solute competitive desorptions were also performed investigate the competitive desorption of the phenolic compounds from HDTMA-bentonite. Freundlich model was used to analyze the single-solute adsorption/desorption results, while the IAST model predicted the hi-solute adsorption/desorption equilibria. The IAST model well predicted hi-solute competitive adsorption/desorption behaviors.

  • PDF

The Effect of Phosphate Desorption Solution on LDH (Layered Double Hydroxide) Desorption (탈착 용액의 조성변화가 층상이중수산화물에 흡착된 인 탈착에 미치는 영향)

  • Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.670-675
    • /
    • 2008
  • Batch type adsorption and desorption tests were performed with different types (Powder, Granule) of Layered double hydroxides (LDHs) saturated with phosphate. The adsorption isotherm was approximated as a modified Langmuir type equation. The maximum adsorption capacity was 55 mg-P/g-LDH for powder type LDH, and 46 mg-P/g-LDH for granule type LDH. The highest phosphate desorption (79.6%) was obtained with 20% NaOH solution, whereas the desorption degrees were 4.8, 22.2% and 46.7% in the solutions of acidic condition (pH 4), 30% NaCl, and 3% NaOH, respectively. It was suggested that the optimal condition for the phosphate desorption from LDH was 30% NaCl + 3~6% NaOH solutions. The desorption characteristics of LDH was little influenced by adsorbent type.

Study on desorption efficiency of naphthalene by adsorbing media and desorbing solvent (흡착관과 탈착용매에 따른 나프탈렌의 탈착효율에 관한 연구)

  • Choi, Jin Hee;Jo, Jihoon;Choi, Seong Bong;Lee, Kwon Seob;Shin, Hyun Hwa;Yang, Jeong Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.403-411
    • /
    • 2009
  • This study was performed to propose appropriate conditions suited to the analysis of naphthalene by comparing desorption efficiencies under various conditions. 1. As to influence by adsorbing media and desorbing solvent on desorption efficiency of naphthalene, when adsorbed by CCT, o-xylene gave the highest desorption efficiency of $73.96{\pm}0.53%$ while the lowest of $1.14{\pm}0.03%$ desorbed by ether. Both XAD-2 and Chromosorb 106 showed around 90% of desorption efficiencies for each solvent, especially desorption efficiencies more than 95% were achieved when adsorbed by Chromosorb 106 and desorbed by $CS_2$ or o-xylene. 2. Desorption efficiencies descended over the storage period in any condition(p<0.05). For all three adsorbing media, while desorption efficiencies showed no significant difference(p>0.05) between room temperature and refrigeration a day of loading, samples kept in room temperature had higher desorption efficiencies than refrigerated ones in 7 and 14 days with significant difference(p<0.05).Also, desorption efficiencies dropped drastically in 7 days, from that point the decreasing tendency went mild. 3. When respective 1 TLV and 0.1 TLV of naphthalene were spiked on CCT and desorbed by CS2($46.45{\pm}0.59%$ vs. $30.15{\pm}0.81%$), o-xylene($73.96{\pm}0.53%$ vs. $67.51{\pm}1.34%$), and ether($1.14{\pm}0.03%$ vs. N.D.) desorption efficiencies increased as the amount of loading increased(p<0.05).On the other hand, naphthalene spiked on XAD-2 and Chromosorb 106 indicated no significant difference(p>0.05) in desorption efficiencies between 1 TLV and 0.1 TLV. In conclusion, in order for favorable desorption efficiencies of naphthalene it is important to select appropriate adsorbing media and desorbing solvent accordingly. The result revealed that adsorbing media of XAD-2 and Chromosorb 106 outperformed CCT and desorbing solvents of $CS_2$ and o-xylene achieved over 90% of desorption efficiencies when adsorbed on XAD-2 and Chromosorb 106. Also, considering the tendency that desorption efficiencies of naphthalene decrease with time, the samples should be analyzed as soon as possible.

Comparison of Desorption Characteristics of Water Vapor on the Types of Zeolites (제올라이트 종류별 수분 탈착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1463-1468
    • /
    • 2012
  • The purpose of this work is to study the desorption characteristics of water vapor on zeolites saturated with water vapor. Three kinds of zeolite; zeolite 3A, zeolite 4A, and zeolite 5A were used as adsorbent. The desorption experiments with several different temperatures in the range of $90{\sim}150^{\circ}C$ and several different flow rates in the ranges of 0~0.4 L/min on zeolite bed were carried out. The desorption ability of water vapor was most effective on zeolite 5A among the compared zeolites. The higher the desorption temperature of water vapor was, the faster the desorption velocity was. The desorption ability of water vapor with an air supply was higher than that without an air supply. The most appropriate air flow rate was considered as 0.1 L/min.