• Title/Summary/Keyword: Detailed Reaction Mechanism

Search Result 100, Processing Time 0.031 seconds

The Development of a Short Reaction Mechanism for Premixed CH4/CHF3/Air Flames (CH4/CHF3/Air 예혼합 화염의 축소 반응 메카니즘 개발)

  • Lee, Ki Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • A short reaction mechanism for premixed $CH_4/CHF_3/Air$ flames was developed with a reduction method of the combined application of simulation error minimization (SEM) which included connectivity method and principal component analysis. It consisted of 43 species and 403 elementary reactions at the condition of less than 5% of maximum error. The calculation time operated with a short mechanism was over 5 times faster than one with a detailed reaction mechanism. Good agreement was found between the flame speeds calculated by the short reaction mechanism and those by the detailed reaction mechanism for the entire range of $CHF_3/CH_4$ mole ratios and equivalence ratios. In addition excellent agreements were determined for the profiles of temperature, species concentration, and the production rates of the various species. So the short reaction mechanism was able to accurately predict the flame structure for premixed $CH_4/CHF_3/Air$ flames.

A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether (디메틸 에테르 착화에 관한 반응기구 축소 연구)

  • Ryu, Bong-Woo;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The numerical analysis of the reduction of reaction mechanism for the ignition of dimethyl ether (DME) was performed. On the basis of a detailed reaction mechanism involving 79 species and 351 reactions, the peak molar concentration and sensitivity analysis were conducted in a homogeneous reactor model. The reduced reaction mechanism involving 44 species and 166 reactions at the threshold value $7.5{\times}10^{-5}$ of the molar peak concentration was established by comparing the ignition delays the reduced mechanism with those the detailed mechanism. The predicted results of the reduced mechanism applied to the single-zone homogeneous charge compression ignition (HCCI) engine model were in agreement with those of the detailed mechanism. Therefore, this reduced mechanism can be used to accurately simulate the ignition and combustion process of compression ignition engine using DME fuel.

Development of a Detailed Chemical Kinetic Reaction Mechanism of Surrogate Mixtures for Gasoline Fuel (가솔린 연료를 위한 대용혼합물의 상세한 화학반응 메카니즘 개발)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • The oxidation of surrogate mixtures for gasoline fuel was studied numerically in perfectly stirred reactor(PSR) to develope the needed detailed reaction mechanism. The reaction mechanism was assembled with the mechanisms for the oxidation of iso-octane or kerosene. It was shown that the reaction model predicted reasonably well the concentration profiles of fuel and major species reported in the literature. As the addition of kerosene into iso-octane as fuel was increased, the concentrations of $C_2H_2$ and benzene became high. Especially benzene known as a carcinogen appeared at a very high concentration in the flue gases.

Experimental and Numerical Investigations on Detailed Methane Reaction Mechanisms in Oxygen Enriched Conditions (산소부화조건의 메탄 상세반응기구에 대한 실험 및 수치해석 연구)

  • Han, Ji-Woong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.207-214
    • /
    • 2004
  • The burning velocities of conventional and oxygen-enriched methane flame in various equivalence ratio were determined by experiments. The validity of existing reaction mechanisms was examined in oxygen-enriched flame on the basis of the experiment results. Modified reaction mechanism is suggested, which was able to predict burning velocity of oxygen enriched flame as well as methane-air flame. Complementary study on reaction mechanisms shows the following results : Present experiment data were found to be more reliable in comparison with existing ones in a oxygen-enrichment condition. It was found that some modification in existing reaction mechanisms is necessary, since discrepancy between measurements and predictions is increasing with oxygen enrichment ratio. The sensitivity analysis was performed to discriminate the dominantly affecting reactions on the burning velocity in various oxygen enrichment and equivalence ratio. A modified GRI 3.0 reaction mechanism based on our experiment results was suggested, in which reaction rate coefficients of (R38) H+O$_2$<=>O+OH in GRI 3.0 reaction mechanisms were corrected based on sensitivity analysis results. This mechanism showed a good agreement in predicting the burning velocity and number density of NO in oxygen-enriched flame and would provide proper reaction information of oxygen-enriched flame at this stage.

The Development of the Short Mechanism for Premixed Dimethyl Ether-Air Flames (Dimethyl Ether-Air 예혼합화염의 축소 반응 메카니즘 개발)

  • Lee, Ki Yong;Lee, Su Gak
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.211-214
    • /
    • 2012
  • A short reaction mechanism was developed in order to predict the flame phenomena in premixed Dimethyl Ether-Air flame with the methods of SEM-CM(Simulation Error Minimization Connectivity Method), sensitivity analysis, and the rate of production analysis. It consisted of 31 species including nitrogen as inert gas and 177 elementary reactions. The flame structures obtained using a detailed reaction mechanism and the short reaction mechanism were compared with various equivalence ratios and pressure, and the results were in good agreement. Therefore, the short reaction mechanism would be used to aim at studying the development of a reduced reaction mechanism.

  • PDF

Short Reaction Mechanism for Premixed CH4-Air Flames at High Pressure (고압에서 예혼합 CH4-Air 화염의 축소 반응 메카니즘)

  • Lee, Su-Gak;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.647-653
    • /
    • 2012
  • A short reaction mechanism for premixed $CH_4$-air flames at high pressure was developed using a reduction method based on the combined application of the simulation error minimization connectivity method and the iterative species-removal sensitivity method. It consisted of 43 species and 554 elementary reactions under the condition that it produces less than 5% of the maximum error. The flame structures obtained using a detailed reaction mechanism and the short reaction mechanism were compared for $CH_4$-air flames with various initial temperatures and equivalence ratios at high pressure, and the results were in good agreement. Therefore, the short reaction mechanism developed could reproduce the flame speeds, temperatures, and concentrations of major and minor species at high pressure.

Examination of Optimal Reaction Mechanism in Oxygen Enriched Condition (산소부화조건에서의 반응기구 검토)

  • Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.247-253
    • /
    • 2003
  • Burning velocities of conventional methane flame and oxygen-enriched methane flame were determined by experimentally and numerically at atmospheric pressure in order to examine the validity of various detailed reaction mechanisms in oxygen-enriched flame. The schlieren system was adopted to obtain the burning velocity of flame stabilized on a circular nozzle. Premix code was employed to compute the burning velocity. Three reaction mechnisms were tested at several oxygen enrichment level, whose names are GRI 3.0, MB(Miller and Bowman) and LKY(Lee Ki Yong) reaction mechanism. Sensitivity analysis was also performed to discriminate dominantly affecting reaction on burning velociy. The results showed that conventional reaction mechanisms originally based on methane-air flame were underpredict the burning velocity at high oxygen-enrichment level. The modified GRI 3.0 reaction mechanism based on our experimental results was suggested and shows a good agreement in estimating the burning velocity and the NO number density of oxygen-enriched flame.

  • PDF

The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames ($CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF

Analysis of Oscillation Behaviour in Unsteady Shock-Induced Combustion with Detailed Reaction Mechanisms

  • Kumar, P.Pradeep;Kim, Kui-Soon;Oh, Sejong;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.251-255
    • /
    • 2015
  • Unsteady Shock-Induced Combustion has been studied for the past few decades since it is considered as one of the potential ways to reach supersonic flights. Experimental observations of Unsteady SIC were observed as early as 1960's. But Lehr was the first to report in detail the mechanisms of Shock-Induced Combustion experimentally. Numerical Studies on SIC were helpful in explaining the insight into the oscillatory behaviour in the mid 90's to early 2000's. Detailed reaction mechanisms is required to prediction the SIC flowfield more in detail. However at that time, very few reaction mechanisms on hydrogen-oxidation were reported. In the last decade, various number of hydrogen reaction mechanisms were reported. In this study, an attempt has been made to analyze the effect of various reaction mechanisms in an unsteady mode of Shock-Induced Combustion.

  • PDF

NOx Formation Characteristics in Diffusion, Partial Premixed and Premixed Jet flame (가스 연료의 연소 방식에 따른 NOx 생성 특성)

  • Choi, Young-Ho;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.155-164
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymetric 2-D CH4 jet diffusion, partial premixed, premixed flame. Calculations were carried out twice with C2-Full Mechanism including prompt NO reaction in addition to the above C2-Thermal NO Mechanism. The role of thermal NO mechanism and prompt NO mechanism on each flame's NO production is investigated by using the numerical result. The NOx production of each flame were evaluated Quantitatively in terms of the NOx emission index

  • PDF