• Title/Summary/Keyword: Detonation

Search Result 325, Processing Time 0.029 seconds

Detonation transmission with an abrupt change in area

  • Hsu, Yao-Chung;Chao, Yei-Chin;Chung, Kung-Ming
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.533-550
    • /
    • 2018
  • Detonation transmission between propane/oxygen (donor) and propane/air (acceptor) with an abrupt area change is experimentally studied. In the donor, there are two types of incident detonation waves: A self-sustained Chapman-Jouguet (CJ) detonation wave and an overdriven detonation wave that is a result of the difference in the initial donor pressure ratios. The piston work is used to characterize the strength of the incident detonation wave. For an incident CJ detonation wave, the re-initiation of a detonation wave in the acceptor depends on the initial pressure in the donor and the expansion ratio. The axisymmetric and non-axisymmetric soot patterns respectively correspond to direct detonation and detonation re-initiation. For an incident overdriven detonation wave, the re-initiation of a detonation wave in the acceptor strongly depends on the degree of overdrive.

Thermodynamic Analysis of Hybrid Engine Cycle of Brayton and Pulse Detonation Engine (브레이튼과 펄스 데토네이션 복합 엔진 사이클의 열역학적 성능 해석)

  • Kim, Geon-Hong;Koo, Ja-Ye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • When detonation is occurred, the working fluid is compressed itself, though there are no other devices that compress the fluid. As a result, an engine which uses detonation for a combustion process doesn't need moving parts so that the engine can be lighter than other engines ever exist, and such an engine is often referred to as a pulse detonation engine. Since using detonation has higher performance than using deflagration, many studies have been attempting to control and analyze the engines using detonation as combustion. The purpose of this study is to analyze the hybrid cycle which is consisted of Brayton and Pulse Detonation Engine cycle. At first, we set the theoretical basis of detonation analysis, and after that we consider two hybrid cycles; a turbojet hybrid cycle and a turbofan hybrid cycle. The more energy released, the higher detonation Mach number the detonation wave has. In general, a cycle which has a detonation process has higher performances but thermal efficiency of hybrid turbofan engine.

  • PDF

Numerical Investigation on detonation combustion waves of hydrogen-air mixture in pulse detonation combustor with blockage

  • Pinku Debnath;K.M. Pandey
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.203-222
    • /
    • 2023
  • The detonation combustion is a supersonic combustion process follows on shock wave oscillations in detonation tube. In this paper numerical studies are carried out combined effect of blockage ratio and spacing of obstacle on detonation wave propagation of hydrogen-air mixture in pulse detonation combustor. The deflagration to detonation transition of stoichiometric (ϕ=1)fuel-air mixture in channel has been analyzed for effect of blockage ratio (BR)=0.39, 0.51, 0.59, 0.71 with spacing of 2D and 3D. The reactive Navier-Stokes equation is used to solve the detonation wave propagation mechanism in Ansys Fluent platform. The result shows that fully developed detonation wave initiation regime is observed near smaller vortex generator ratio of BR=0.39 inside the combustor. The turbulent rate of reaction has also a great significance role for shock wave structure. However, vortices of rapid detonation wave are appears near thin boundary layer of each obstacle. Finally, detonation combustor demonstrates the superiority of pressure gain combustor with turbulent rate of reaction of 0.6 kg mol/m3 -s inside the detonation tube with obstacle spacing of 12 cm, this blockage enhanced the turbulence intensity and propulsive thrust. The successful detonation wave propagation speed is achieved in shortest possible time of 0.031s with a significance magnitude of 2349 m/s, which is higher than Chapman-Jouguet (C-J) velocity of 1848 m/s. Furthermore, stronger propulsive thrust force of 36.82 N is generated in pulse time of 0.031s.

Rotating Detonation Engine Study in AGU

  • Hayashi, A. Koichi;Uemura, Yuho;Yamada, Takayuki;Yamada, Eisuke
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.1-4
    • /
    • 2011
  • Detonation is useful phenomena to get an effective thrust for aerospace vehicle. Fast pressure rise of detonation provides a cycle close to the constant volume system to use energy efficiently. From this point detonation can be used as an aerospace engine system. There are several types of detonation engine; pulse detonation engine (PDE) which provides a thrust by detonation intermittently, and oblique detonation engine (ODE), spin detonation engine (SDE), and rotating detonation engine (RDE) which, on the other hand, provide a continuous thrust.

  • PDF

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

Effect of Curvature on the Detonation Wave Propagation Characteristics in Annular Channels

  • Lee, Su-Han;Jo, Deok-Rae;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.531-535
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. Numerical approaches used in the previous studies of detonation wave propagation were extended to the present study with OpenMP parallelization for multicore SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

Numerical Analysis of Detonation Wave Propagation in Annular Channel (환상 형 도관 내의 데토네이션 파 전파 특성 해석)

  • Lee, Su-Han;Cho, Deok-Rae;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.367-370
    • /
    • 2007
  • Present study examines detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. A parametric study was carried out for a various regimes of detonation waves from weakly unstable to highly unstable detonation waves. Numerical approaches that used in the previous study of numerical requirements of the simulation of detonation wave propagations in 2D and 3D channel were used also for the present study with OpenMP parallization for multi-core SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

Numerical Analysis of Responses of a Elasto-plastic Tube under Kerosene-air Mixture Detonation (케로신-공기 혼합물의 비정상연소 모델과 탄소성 관의 동적 거동 수치해석)

  • Lee, Younghun;Gwak, Min-cheol;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.169-172
    • /
    • 2015
  • This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with CJ condition and experimental cell size. And the thermal softening effect on elasto-plstic model of metal tube is indicated by different dynamic response of detonation loaded tube in various temperature and tube thickness.

  • PDF

Experiments on the Detonation Propagation in Small Tubes (가는 관내에서의 데토네이션 전파에 관한 실험적 연구)

  • Lee Bok-Jik;Shepherd Joseph E.;Jeung In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.314-318
    • /
    • 2006
  • The interest on the detonation in small tubes, which can be applied to the ignition devices of propulsion system, is increasing. However, the propagation dynamics of detonation waves in small tubes has not been investigated clearly yet. In the present experiments, propagations of detonation waves in stoichiometric propane-oxygen mixture through transparent tubes were recorded using a high speed camera and average velocities were measured as well. In terms of average velocity, there exists a transition regime where the waves show smooth transition from the normal Chapman-Jouguet(CJ) detonation to the low velocity detonation$(\sim0.5V_{CJ})$ along the decreasing initial pressure. In this transition regime, the detonation waves are highly unstable and show cyclic or intermittent longitudinal velocity fluctuation.

  • PDF

Visualizing Detonation Waves

  • Shepherd, Joseph E.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.9-11
    • /
    • 2006
  • Visualization has played an essential role in the development of our understanding of the complex unsteady flows associated with the initiation, propagation, and extinction of detonation waves. These methods and application to various aspects of detonation are illustrated by results obtained in my laboratory, particularly using combinations of the PLIF technique with other methods. Examples shown will include detonation initiation by projectiles, diffraction over ramps and steps, diffraction out of tubes, detonation implosion, and the cellular structure of detonation waves.

  • PDF