• Title/Summary/Keyword: Dibucaine

Search Result 15, Processing Time 0.029 seconds

Potentiometric Sensor for the Determination of Dibucaine in Pharmaceutical Preparations and Electrochemical Study of the Drug with BSA

  • Ensafi, Ali A.;Allafchian, A.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2722-2726
    • /
    • 2011
  • Plasticized poly(vinyl chloride), PVCs, with different membrane compositions tested for use in the construction of an ion-selective sensor for the determination dibucaine. A prepared membrane with dioctyl phthalate-PVC and ion-pair of N-(1-naphthyl)ethylenediamine dihydrochloride-tetraphenyl borate had a good potential to acts as a potentiometric sensor for the analysis of dibucaine. A linear relationship was obtained between potential and logC varying between $1.0{\times}10^{-6}$ and $1.0{\times}10^{-2}$ M dibucaine with a good repeatability and reproducibility. The sensor was applied for the determination of the drug in pharmaceuticals and biological fluids such as plasma and urine samples with satisfactory results. The drug electrode has also been used to study the interaction of bovine serum albumin (BSA) with dibucaine. The saturated quantities of dibucaine binding were 13.04, 5.30 and 9.70 mol/mol in 0.01, 0.02 and 0.1% of protein, respectively.

Dibucaine Inhibition of Serum Cholinesterase

  • Elamin, Babiker
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.149-153
    • /
    • 2003
  • The dibucaine number (DN) was determined for serum cholinesterase (EC 3.1.1.8, SChE) in plasma samples. The ones with a DN of 79-82 were used, because they had the "usual" SChE variant. The enzyme was assayed colorimetrically by the reaction of 5,5'-dithiobis-[2-nitrobenzoic acid] (DTNB) with the free sulfhydryl groups of thiocholine that were produced by the enzyme reaction with butrylthiocholine (BuTch) or acetylthiocholine (AcTch) substrates, and measured at 412 nm. Dibucaine, a quaternary ammonium compound, inhibited SChE to a minimum within 2 min in a reversible manner. The inhibition was very potent. It had an $IC_{50}$ of $5.3\;{\mu}M$ with BuTch or $3.8\;{\mu}M$ with AcTch. The inhibition was competitive with respect to BuTch with a $K_i$ of $1.3\;{\mu}M$ and a linear-mixed type (competitive/noncompetitive) with respect to AcTch with inhibition constants, $K_i$ and $K_I$ of 0.66 and $2.5\;{\mu}M$, respectively. Dibucaine possesses a butoxy side chain that is similar to the butryl group of BuTch and longer by an ethylene group from AcTch. This may account for the difference in inhibition behavior. It may also suggest the existence of an additional binding site, other than the anionic binding site, and of a hydrophobic nature.

The Effect of Dibucaine.HCl on the Physical Properties of Neuronal Membranes

  • Jang, Hye-Ock;Hyun, Cheol-Ho;Yoon, Jin-Hyeok;Kang, Yong-Gyu;Park, Sung-Min;Park, Young-Sik;Park, Jun-Seop;Ok, Jin-Seok;Lee, Dong-Hun;Bae, Moon-Kyung;Yun, Il
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • Fluorescent probe techniques were used to evaluate the effect of dibucaine.HCl on the physical properties (transbilayer asymmetric lateral mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(l-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Dibucaine.HCl increased the bulk lateral mobility, and annular lipid fluidity in SPMV lipid bilayers, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMV lipid bilayer induced by dibucaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral mobility of bulk SPMV lipid bilayer. It also caused membrane proteins to cluster. These effects of dibucaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of dibucaine.HCl.

  • PDF

Activation Mechanism of Arachidonic Acid in Human Neutrophil Function (사람 중성호성 백혈구의 기능에 있어서 Arachidonic Acid의 활성화 기전)

  • Sim, Jae-Kun;Lee, Chung-Soo;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.91-102
    • /
    • 1992
  • In $Ca^{++}$ containing media, arachidonic acid markedly stimulated superoxide and $H_2O_2$ generation and activated NADPH oxidase. In $Ca^{++}$ free media, stimulatory action of arachidonic acid on NADPH oxidase was not detected. Arachidonic acid-stimulated respiratory burst was inhibited by EGTA, TMB-8, verapamil, diltiazem, nifedipine, dibucaine, lidocaine, CCCP, 2,4-dinitrophenol, sodium arsenate, chlorpromazine, theophylline, $HgCl_2$, PCMB and PCMBSA but not affected by tetrodotoxin, tetraethylammonium chloride and procaine. EGTA almost completely inhibited release of ${\beta}-glucuronidase$ by arachidonic acid and verapamil, CCCP and theophylline slightly inhibited it, whereas dibucaine did not show any significant effect. Arachidonic acid induced $Ca^{++}$ release from intact neutrophils and it was decreased by TMB-8. Arachidonic acid-induced elevation of intracellular free $Ca^{++}$ level was inhibited by EGTA and CCCP and slightly inhibited by TMB-8. Amount of intracellular free $Ca^{++}$ increased by either arachidonic acid plus verapamil or arachidonic acid plus dibucaine was greater than that by arachidonic acid alone. These results suggest that various changes of biochemical events may be implicated in the functional expression in neutrophils activated by arachidonic acid. Arachidonic acid appears to elevate cytosolic free $Ca^{++}$ level by stimulating $Ca^{++}$ release from intracellular $Ca^{++}$ storage sites. During activation of neutrophils, $Ca^{++}$ influx and efflux may be accomplished, simultaneously.

  • PDF

Effects of Local Anesthetics on Electron Transport and Generation of Superoxide Radicals in Mitochondria (국소마취제가 Mitochondria에서의 전자이동 및 Superoxide Radicals의 생성에 미치는 영향)

  • Lee, Chung-Soo;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.113-121
    • /
    • 1987
  • Local anesthetics were investigated for their effects on mitochondrial electron transport system, production of superoxide radical from submitochondrial particles and malondialdehyde production through lipid per oxidation. Local anesthetics had various effects on activities of enzymes in electron transport chain. The activities of NADH dehydrogenase, NADH oxidase and NADH-ubiquinone oxidoreductase were effectively inhibited by lidocaine, procaine and dibucaine but slightly influenced by cocaine. The activities of succinate dehydrogenase, succinate-cytochrome c oxidoreductase and succinate-ubiquinone oxidoreductase were inhibited by lidocaine and dibucaine, but the succinate oxidase activity was stimulated by local anesthetics. Both dihydroubiquinone-cytochrome c oxidoreductase and cytochrome c oxidase activities were inhibited by local anesthetics. In these reactions, the response of Complex I segment to local anesthetics was greater than other Complex segments. Local anesthetics inhibited both the superoxide production from submitochondrial particles supplemented with succinate or NADH and the enhanced production of superoxide radicals by antimycin. The malondialdehyde production by oxygen free radicals was inhibited by local anesthetics. These results suggest that the inhibition of superoxide and malondialdehyde production caused by local anesthetics may be brought by suppression of the electron transport in mitochondria at sites in or near complex I segment.

  • PDF

Changes in the Number of Exocrine Granules in Mouse Pancreatic Acinar Cells Induced by Acetylcholine and MNNG in vitro (Acetylcholine과 MNNG가 생쥐 췌장세포(膵臟細胞)에서 외분비과립(外分泌顆粒)의 양적변화(量的變化)에 미치는 영향(影響))

  • Cho, Eng-Haeng;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.18 no.2
    • /
    • pp.34-46
    • /
    • 1988
  • The stimulation-secretion coupling in the pancreatic acinar cell have been studied by electron microscope. Morphological changes in the cells exhibited the cellular response induced by acetylcholine and MNNG. MNNG, a guanylate cyclase activator, induced the formation of numerous secretory granules in a period after the agent administration. This result suggest that guanylate cyclase potentiated the early sustained response in pancreatic acinar cells stimulated by acetylcholine. Cycloheximide and dibucaine reduced the secretory granules in number during sustained period. In pancreatic acinar cells, the secretion granules were considered to be directly packaged from cisternal space of endoplasmic reticulum.

  • PDF

Roles of $Na^+\;-Ca^{2+}$ Exchange in the Negative Force-Frequency Relationship

  • Ko, Chang-Mann;Kim, Soon-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.715-724
    • /
    • 1998
  • Frequency-force relationships (FFR) were studied in electrically field stimulated rat left atria (LA) by reducing the stimulation frequency from resting 3 Hz to test frequencies (0.1-1 Hz) for 5 minutes. The twitch amplitudes of LA elicited the typical negative staircases with 3-phased changes: the initial rapid increase, the second decrease and the following plateau at test frequencies. Verapamil $(3{\times}10^{-5}\;M)$ pretreatment elicited frequency-dependent suppression of the twitch amplitudes, exaggerating the negative staircase. Monensin pretreatment enhanced not the peak but the plateau amplitudes in a concentration-dependent manner. When the $Na^+-Ca^{2+}$ exchange was blocked by $Na^+\;and\;Ca^{2+}$ depletion in the Krebs Hensleit buffer (0 $Na^+-0\;Ca^{2+}$ KHB), the twitch amplitudes increased in a frequency-dependent manner, changing the negtive staircase into the positve one. Meanwhile, the 0 $Na^+-0\;Ca^{2+}$ KHB applicationinduced enhancement was strongly suppressed by caffeine (5 mM) pretreatment. Only dibucaine among the local anesthetics increased the basal tone during frequency reduciton. There were no differences in $^{45}Ca$ uptakes between 0.3 Hz and 3 Hz stimulation except at 1 min when it was significantly low at 0.3 Hz than 3 Hz, illustrating net $Ca^{2+}$ losses. Monensin pretreatment enhanced the rate of this $Ca^{2+}$ loss. Taken together, it is concluded that $Na^+-Ca^{2+}$ exchange extrudes more SR released $Ca^{2+}$ out of the cell in proportion to the frequency, resulting in the negative rate staircase in the rat LA.

  • PDF

Characterization of Pyribenzoxim Metabolizing Enzymes in Rat Liver Microsomes

  • Liu Kwang-Hyeon;Moon Joon-Kwan;Seo Jong-Su;Park Byeoung-Soo;Koo Suk-Jin;Lee Hye-Suk;Kim Jeong-Han
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The primary metabolism of pyribenzoxim was studied in rat liver microsomes in order to identify the cytochrome P450 (CYP) isoform(s) and esterases involved in the metabolism of pyribenzoxim. Chemical inhibition using CYP isoform-selective inhibitors such as ${\alpha}$-naphthoflavone, tolbutamide, quinine, chlorzoxazone, troleandomycin, and undecynoic acid indicated that CYP1A and CYP2D are responsible for the oxidative metabolism of pyribenzoxim. And inhibitory studies using eserine, bis-nitrophenol phosphate, dibucaine, and mercuric chloride indicated pyribenzoxim hydrolysis involved in microsomal carboxylesterases containing an SH group (cysteine) at the active center.

Effects of Atropine, Phentolamine and Propranolol on Calcium uptake, Superoxide generation and Phagocytic activity in activated PMN Leukocytes (Atropine, Phentolamine과 Propranolol이 활성화된 다형핵 백혈구에서의 칼슘 흡수, $O_2-$ 생성 및 식작용에 미치는 효과)

  • Lee, Chung-Soo;Han, Eun-Sook;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.83-92
    • /
    • 1988
  • Although the release of lysosomal enzymes from activated PMN leukocyte can be regulated by intracellular cyclic nucleotide levels, other responses of PMN leukocyte according to the binding of neurotransmitters to either ${\beta}$-adrenergic or muscarinic receptors are still not clarified. In addition, the function of PMN leukocyte mediated by ${\alpha}$-adrenergic receptors is uncertain. Atropine, phentolamine and propranolol inhibited calcium uptake, superoxide generation, NADPH oxidase activity and phagocytic activity in activated PMN leukocyte, whereas carbachol and isoproterenol slightly further stimulated the responses of activated cells. Either carbachol or isoproterenol stimulated superoxide generation was inhibited by their antagonists, atropine and propranolol, respectively. The response of activated PMN leukocyte was inhibited by chlorpromazine, verapamil and dantrolene but slightly stimulated by lithium. On the other hand, chlorpromazine and dibucaine did not affect NADPH oxidase activity. Atropine, phentolamine and propranolol suppressed the calcium dependent phagocytic activity. Thus, the results suggest that atropine, phentolamine and propranolol may inhibit superoxide generation in activated PMN leukocyte by the inhibition of calcium influx and by their direct action on the NADPH oxidase system which is associated with autonomic receptors.

  • PDF

Influences of Divalent Cations and Membrane Phosphorylation Inhibitors on $Na^+-Ca^{++}$ Exchange in Synaptosomes (이가 양이온과 세포막 인산화 반응의 억제제가 Synaptosome에서의 소듐-칼슘 교환이동에 미치는 영향)

  • Shin, Yong-Kyoo;Lee, Chung-Soo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.179-187
    • /
    • 1988
  • Verapamil, tetrodotoxin and tetraethylammonium chloride in the stated amount did not affect the $Na^{++}$ induced $Ca^{++}$ release. $Cd^{++}$ and $Zn^{++}$ significantly inhibited the $Na^{++}$ induced $Ca^{++}$ release. $Mn^{++}$ also inhibited $Na^+-Ca^{++}$ exchange. $Cd^{++}$ inhibited $Na^+-Ca^{++}$ exchange noncompetitively with an apparent inhibition constant (Ki) of $100\;{\mu}M$. $Cd^{++}$ caused loss of sulfhydryl group, whereas $Zn^{++}$ did not show any significant effect. $Cd^{++}$ and $Zn^{++}$ effectively inhibited $Na^+-Ca^{++}$ ATPase and slightly inhibited $Ca^{++}-Mg^{++}$ ATPase. Carbonyl cyanide chlorophenylhydrazone, 2,4-dinitrophenol and sodium arsenate stimulated the $Na^{++}$ induced $Ca^{++}$ release. Dibucaine and oligomycin slightly inhibited it. The results suggest that the $Na^+-Ca^{++}$ exchange on the synaptosomal plasma membrane may be not accomplished by ion channels. The $Na^+-Ca^{++}$ exchange is sensitively inhibited by $Cd^{++}$ and this transport process appears to be partially regulated by sulfhydryl groups of the synaptosomal plasma membrane. It is also postulated that $Na^+-Ca^{++}$ exchange is suppressed during the phosphorylation reaction of protein component on the neuronal membrane.

  • PDF