• 제목/요약/키워드: Differential Method

검색결과 4,207건 처리시간 0.033초

SOLUTION OF RICCATI TYPES MATRIX DIFFERENTIAL EQUATIONS USING MATRIX DIFFERENTIAL TRANSFORM METHOD

  • Abazari, Reza
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1133-1143
    • /
    • 2009
  • In this work, we successfully extended dimensional differential transform method (DTM), by presenting and proving some new theorems, to solve the non-linear matrix differential Riccati equations(first and second kind of Riccati matrix differential equations). This technique provides a sequence of matrix functions which converges to the exact solution of the problem. Examples show that the method is effective.

  • PDF

FUZZY SOLUTIONS OF ABEL DIFFERENTIAL EQUATIONS USING RESIDUAL POWER SERIES METHOD

  • N. NITHYADEVI;P. PRAKASH
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.71-82
    • /
    • 2023
  • In this article, we find the approximate solutions of Abel differential equation (ADE) with uncertainty using residual power series (RPS) method. This method helps to calculate the sequence of solutions of ADE. Finally, numerical illustrations demonstrate the applicability of the method.

백색잡음 미분방정식에 대한 디지탈 시뮬레이션 (Digital simulation of differential equations driven by white noise)

  • 조항주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.383-388
    • /
    • 1991
  • This paper analizes two numerical integration methods, both based on the Runge Kutta 4-th order formula for deterministic systems, for digital simulation of a differential equation driven by white noise. It is shown that a "standard' Runge Kutta method for stochasitic systems yields solutions of Stratonovich differential equations, while Riggs and Phillips' method results in solutions of Ito differential equations. Therefore the white noise differential equation must be converted into the equivalent Ito equation before the latter method is used. Digital simulation results for a simple differential equation are also presented.nted.

  • PDF

NEW HOMOTOPY PERTURBATION METHOD FOR SOLVING INTEGRO-DIFFERENTIAL EQUATIONS

  • Kim, Kyoum Sun;Lim, Hyo Jin
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.981-992
    • /
    • 2012
  • Integro-differential equations arise in modeling various physical and engineering problems. Several numerical and analytical methods have been developed to solving such equations. We introduce the NHPM for solving nonlinear integro-differential equations. Several examples for solving integro-differential equations are presented to illustrate the efficiency of the proposed NHPM.

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

DI기법에 의한 스토케스틱 순환적 알고리즘의 수렴분석 (Convergence analysis of stochastic recursive algorithms)

  • 추연석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.901-903
    • /
    • 1995
  • The ordinary differential equation (ODE) method has been widely used for the convergence analysis of stochastic recursive algorithms. The principal objective of this method is to associate to a given algorithm a differential equation with continuous righthand side. Usually some assumptions should be imposed to get such a differential equation. If any of assumptions fails, then the ODE method cannot be used. Recently a new method using differential inclusions (DIs) was introduced in [3], which is useful to deal with those cases. The DI method shares the same idea with the ODE method, but it is different in that a differential inclusion is identified instead of a differential equation with continuous righthand side. In this paper, we briefly review the DI method and then analyze a Robbins and Monro (RM)-type algorithm. Our focus is placed on the projected algorithm.

  • PDF

미분변환법과 일반화 미분구적법을 이용한 탄성 지반상의 열림 균열을 가진 Euler-Bernoulli 보의 진동 해석 (Vibration Analysis of Euler-Bernoulli Beam with Open Cracks on Elastic foundations Using Differential Transformation Method and Generalized Differential Quadrature Method)

  • 황기섭;윤종학;신영재
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.279-286
    • /
    • 2006
  • The main purpose of this paper is to apply differential transformation method(DTM) and generalized differential quadrature method(GDQM) to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. In this paper the concepts of DTM and GDQM were briefly introduced. The governing equation of motion of the beam with open cracks on elastic foundation is derived. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated. Numerical calculations are carried out and compared with previous published results.

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권4호
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

Response of forced Euler-Bernoulli beams using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.95-119
    • /
    • 2012
  • In this paper, forced vibration differential equations of motion of Euler-Bernoulli beams with different boundary conditions and dynamic loads are solved using differential transform method (DTM), analytical solutions. Then, the modal deflections of these beams are obtained. The calculated modal deflections using DTM are represented in tables and depicted in graphs and compared with the results of the analytical solutions where a very good agreement is observed.