• Title/Summary/Keyword: Differential pressure control

Search Result 135, Processing Time 0.032 seconds

A Study on the Automatic Pressure Differential Sensor Development of Smoke Control Zone (제연구역의 자동 차압센서 개발에 관한 연구)

  • Lee, Dong-Myung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.23-28
    • /
    • 2005
  • This study defined engineering mechanism and compensation method to establish reference pressure of smoke control zone with atmospheric pressure that is compensated for temperature. The reliable pressure differential sensor was developed by establishing the specifications, algorithms and constructing engineering data. The development of pressure differential sensor can cut down number of processes, manufacturing and installation cost by removing pressure measurement pipe established separately for non smoke control zone, and improve the accuracy of pressure differential by embedding pressure measurement ports for non smoke control zone. More correct and reliable pressure differentials can be obtained by the central control rather than the existent individual control. This will provide the basics and the flexibility to the integral smoke control system and accordingly improve the performance of disaster prevention.

A Study on the Smoke Control in Pressure Differential Systems (급기가압 제연댐퍼 위치에 따른 방연풍속특성 및 성능개선방안에 관한 연구)

  • Bae, Sang-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.239-244
    • /
    • 2011
  • This study is aimed to develop fundamental technology on the smoke control method by simulation model and scale model simulation technique in pressure differential systems. Thereby, this research aimed to establish design elements and technologies required for smoke control system that is suitable to pressure differential systems of the high-rise buildings in order to minimize the loss of lives and property damage in case of fire.

  • PDF

A Study on the Orifice Shape of High-Differential Pressure Control Butterfly Valve (고차압 제어 버터플라이 밸브의 오리피스 형상에 관한 연구)

  • Yun, Ik-Sang;Jin, Jeong-In;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.107-114
    • /
    • 2021
  • Butterfly valves are used in various industries to control the flow rate, flow direction, pressure, and temperature. These are gaining popularity in the field of plant industry to enable high-differential pressure because of their low maintenance costs and ease of installation. This study presents a numerical analysis method to analyze changes in the flow characteristics of a high-differential pressure control butterfly valve based on the location and shape of the orifice. The numerical analysis was conducted using a commercial CFD program. The analysis results show a correlation between the orifice shape and cavitation phenomenon.

The Experimental Study on the Leakage of Automatic Pressure Differential·Overpressure Control Dampers by Increasing the Number of Damper Operation (자동차압·과압조절형댐퍼의 개폐동작횟수 증가에 따른 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.56-61
    • /
    • 2016
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of above 40 Pa, but pressure differential is excessively overpressure in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by increasing the number of dampers operation for identifying this problems. The result of testing, the leakage has difference between new dampers and increased the number of operation dampers. As the static preassure increase, the leakage difference increase. Comparison with preceding study, this result has similar linear tendency.

A Study on Reduction of Cavitation with Orifice on High Differential Pressure Control Butterfly Valve (오리피스를 이용한 고차압 제어 버터플라이 밸브의 캐비테이션 저감에 관한 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.131-139
    • /
    • 2022
  • The exchange of goods over the sea is a situation in which the amount of trade between countries is gradually increasing. In order to maintain the optimal operating condition, the ship maintains stability and optimal operating conditions by inserting or withdrawing ballast water from the ballast tank according to the loading condition of cargo capacity is also increasing. Control valves play an important role in controlling fluid flow in these pipes. When the flow rate is controlled using a control valve, problems such as cavitation, flashing, and suffocating flow may occur due to high differential pressure, and in particular, damage to valves and pipes due to cavitation is a major problem. Therefore, in this study, the cavitation phenomenon is reduced by installing orifices at the front and rear ends of the high differential pressure control butterfly valve to reduce the sudden pressure drop at the limiting part of the butterfly valve step by step. The flow coefficient according to the shape of the orifice, the degree of cavitation occurrence, and the correlation were analyzed using a CFD(Cumputational Fluid Dynamics), and an optimal orifice design for reducing cavitation is derived.

The Experimental Study on the Leakage of Automatic Pressure Differential · Overpressure Control Dampers (자동차압 · 과압조절형댐퍼의 누설량 실험 연구)

  • Shin, Pyung-Shik;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.71-75
    • /
    • 2015
  • Recently, Since buildings are bigger and higher, the damage of human life can be increased by fire flame and smoke in fire. Smoke control system is necessary to decrease this damage. Therefore, Air supply pressurization smoke control system is applied to vestibule of escape stairway. NFSC requires pressure differential of 40 Pa~60 Pa, but pressure differential is over 60 Pa in the field. It is known that the cause of this over pressure differential is much leakage of damper. Over pressure differential can bad effect to escaper by pressurizing the door. Analyze the real leakage of damper by testing for identifying this problems. The result of testing, leakage is $0.090m^3/s{\sim}0.154m^3/s$. It is necessary to limit the leakage of dampers for safe of escapers.

Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing (반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가)

  • Ahn, Jin-Hong;Kang, Ki-Tai;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

The Intact Evaluation of High Pressure Control Valve Trim Parts (고차압 제어밸브 트림부 분석 및 개선방안 검토)

  • Jang, H.;Yoon, I.S.;Kim, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.581-584
    • /
    • 2008
  • At the inlet and outlet differential pressure and The fluid velocity over 32m/s are damaged (Plug, sheet ring, trim) About reduction trim parts of the control valve. AOV of the differential pressure 1,500psi become often the damage in the nuclear power plant. Damages of AOV studied CFD analysis and improvement program. Multi-stage trim designs which decrease a fluid kinetic energy are demanded and AOV parts are demanded case hardening and material change.

  • PDF

Field Experiment on Influence of Stack Effect to Pressure Differential System for Smoke Control (연돌효과가 급기가압 제연시스템에 미치는 영향에 대한 현장실험)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.194-200
    • /
    • 2008
  • In order to design and operate successfully the pressure differential system for smoke control which uses difference of pressure between compartments of building, architectural factors affecting the pressure field of building should be examined and the stack effect is one of the important factors. The field experiments on pressure field in two buildings of 21 stories and 31 stories in summer and winter season with regard to on/off condition of the pressure differential system are carried out to evaluate the influence of stack effect to evacuation and smoke management of high-rise building. In winter season when the stack effect increases, as the pressure differential system starts to operate, the pressure in upper stair rises largely due to the combination effect of the air infiltration from lobby to stair and the stack effect.

A Study on the MR Cylinder with Built-in alves (밸브 내장형 MR 실린더에 관한 연구)

  • Song Joo-Young;Ahn Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.130-136
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated fur fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has $\varphi30mm\times300mm$ and $\varphi28.5mm\times120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa was obtained with the input current of 1.5A. The rising time was 2.3s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the position control.