• Title/Summary/Keyword: Differential voltage

Search Result 581, Processing Time 0.043 seconds

Design of Differential Voltage-to-Frequency Converter Using Current Conveyor Circuit (전류 컨베어 회로를 이용한 차동전압-주파수 변환기의 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.891-896
    • /
    • 2011
  • This paper describes the differential voltage-to-frequency converter which is realized current conveyor circuits. The output frequency of the differential voltage-to-frequency converter is proportional to the difference of two input voltages. The designed circuit is simulated by HSPICE. The range of input voltage difference is from several volts to several milli-volts. From the simulation results the error is less than from -1.9% to +1.8% compared to the calculated values.

Analysis on Signal Transmission Specific property using Low Voltage Differential Signaling Interface Logic (LVDS(Low Voltage Differential Signaling) Interface Logic을 이용한 신호전달 특성 분석)

  • 김석환;최익서;허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.473-476
    • /
    • 2002
  • 고도로 발달된 정보화 시대에서 우리가 원하는 정보를 짧은 시간, 적은 비용으로 서로 주고받기 위해서는 이것에 맞는 시스템이 요구된다. 반도체 chip의 대용량과 고속화됨으로써 TTL, LVTTL 등이 data 100Mbps 정도를 안전하게 전달 할 수 있는 능력이 있으므로 그 이상을 전달할 수 있는 새로운 Logic level이 필요하게 되었다. 이에 맞추어 신호 level의 여러 가지 중 본 논문에서는 Virtex II XC2V 1000 FF896을 이용하여 Differential I/O LVDS(Low Voltage Differential Signaling) level 특성을 clock, Data와의 전송 관계를 Eye_Pattern을 통해 살펴보았다.

  • PDF

Satellite Battery Cell Voltage Monitor System Using a Conventional Differential Amplifier (종래의 차동증폭기를 사용한 인공위성 배터리 셀 전압 감시 시스템)

  • Koo, Ja-Chun;Choi, Jae-Dong;Choi, Seong-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.113-118
    • /
    • 2005
  • This paper shows a satellite battery cell voltage monitor system to make differential voltage measurements when one or both measurement points are beyond voltage range allowed by a conventional differential amplifier. This system is particularly useful for monitoring the individual cell voltage of series-connected cells that constitute a rechargeable satellite battery in which some cell voltages must be measured in the presence of high common mode voltage.

Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications (고속 LVDS 응용을 위한 전송선 분석 및 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.70-78
    • /
    • 2009
  • This paper addresses the analysis and the design optimization of differential interconnects for high-speed Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and trace space in differential printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, and time-domain transient simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects. We believe that the proposed approach is very helpful to optimize high-speed differential FPCB interconnects for LVDS applications.

A Fabrication and Testing of New RC CMOS Oscillator Insensitive Supply Voltage Variation

  • Kim, Jin-su;Sa, Yui-hwan;Kim, Hi-seok;Cha, Hyeong-woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2016
  • A controller area network (CAN) receiver measures differential voltage on a bus to determine the bus level. Since 3.3V transceivers generate the same differential voltage as 5V transceivers (usually ${\geq}1.5V$), all transceivers on the bus (regardless of supply voltage) can decipher the message. In fact, the other transceivers cannot even determine or show that there is anything different about the differential voltage levels. A new CMOS RC oscillator insensitive supply voltage for clock generation in a CAN transceiver was fabricated and tested to compensate for this drawback in CAN communication. The system consists of a symmetrical circuit for voltage and current switches, two capacitors, two comparators, and an RS flip-flop. The operational principle is similar to a bistable multivibrator but the oscillation frequency can also be controlled via a bias current and reference voltage. The chip test experimental results show that oscillation frequency and power dissipation are 500 kHz and 5.48 mW, respectively at a supply voltage of 3.3 V. The chip, chip area is $0.021mm^2$, is fabricated with $0.18{\mu}m$ CMOS technology from SK hynix.

Low Phase Noise LC-VCO with Active Source Degeneration

  • Nguyen, D.B. Yen;Ko, Young-Hun;Yun, Seok-Ju;Han, Seok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • A new CMOS voltage-bias differential LC voltage-controlled oscillator (LC-VCO) with active source degeneration is proposed. The proposed degeneration technique preserves the quality factor of the LC-tank which leads to improvement in phase noise of VCO oscillators. The proposed VCO shows the high figure of merit (FOM) with large tuning range, low power, and small chip size compared to those of conventional voltage-bias differential LC-VCO. The proposed VCO implemented in 0.18-${\mu}m$ CMOS shows the phase noise of -118 dBc/Hz at 1 MHz offset oscillating at 5.03 GHz, tuning range of 12%, occupies 0.15 $mm^2$ of chip area while dissipating 1.44 mW from 0.8 V supply.

A Study on The Design of High Speed-Low Voltage LVDS Driver Circuit with Novel ESD Protection Device (새로운 구조의 ESD 보호소자를 내장한 고속-저 전압 LVDS 드라이버 설계에 관한 연구)

  • Kim, Kui-Dong;Kwon, Jong-Ki;Lee, KJae-Hyun;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.141-148
    • /
    • 2006
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD (Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low signal swing range, maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps. And Zener Triggered SCR devices to protect the ESD Phenomenon were designed. This structure reduces the trigger voltage by making the zener junction between the lateral PNP and base of lateral NPN in SCR structure. The triggering voltage was simulated to 5.8V. Finally, The high speed I/O interface circuit with the low triggered ESD protection device in one-chip was designed.

  • PDF

Hot Electron Induced Input offset Voltage Modeling in CMOS Differential Amplifiers (Hot electron에 의한 CMOS 차동증폭기의 압력 offset 전압 모델링)

  • Jong Tae Park
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.82-88
    • /
    • 1992
  • This paper presents one of the first comprehensive studies of how hot electron degradation impacts the input offset voltage of a CMOS differential amplifiers. This study utilizes the concept of a virtual source-coupled MOSFET pair in order to evaluate offset voltaged egradation directly from individual device measurement. Next, analytical models are developed to describe the offset voltage degradation. These models are used to examine how hot electron induced offset voltage is affected with the device parameters.

  • PDF

Near-$V_{TH}$ Supply 64-Bit Adder using Bootstrapped CMOS Differential Logic (Bootstrapped CMOS Differential Logic 기술을 채용한 Near-$V_{TH}$ Supply에서 동작하는 64-Bit Adder 설계)

  • Oh, Jae-Hyuk;Jung, Byung-Hwa;Kong, Bai-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.581-582
    • /
    • 2008
  • This paper describes novel bootstrapped CMOS differential logic family operating at near-Vth supply voltage. The proposed logic family provides improved switching speed by utilizing voltage bootstrapping for the supply voltage approaching device thresholds. The circuit is configured as differential structure having single bootstrapping capacitor, minimizing area overhead and providing complete logic composition capability. A 64-bit adder designed using the proposed technique in a 0.18um CMOS process provides up to 79% improvement in terms of power-delay product as compared to the conventional adder designed with DCVS.

  • PDF

An InGaP/GaAs HBT Based Differential Colpitts VCO with Low Phase Noise

  • Shrestha, Bhanu;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • An InGaP/GaAs HBT based differential Colpitts voltage control oscillator(VCO) is presented in this paper. In the VCO core, two switching transistors are introduced to steer the core bias current to save power. An LC tank with an inductor quality factor(Q) of 11.4 is used to generate oscillation frequency. It has a superior phase noise characteristics of -130.12 dBc/Hz and -105.3 at 1 MHz and 100 kHz frequency offsets respectively from the carrier frequency(1.566 GHz) when supplied with a control voltage of 0 volt. It dissipates output power of -5.3 dBm. Two pairs of on-chip base collector (BC) diodes are used in the tank circuit to increase the VCO tuning range(168 MHz). This VCO occupies the area of $1.070{\times}0.90mm^2$ including buffer and pads.