• Title/Summary/Keyword: Digital fringe projection

Search Result 6, Processing Time 0.02 seconds

An Improved Method of LCD Gamma-nonlinearity Error Reduction in Digital Fringe Projection for Optical Three-dimensional Shape Measurement (3차원 광학 측정을 위한 디지털 프린지 투사에 있어서 LCD 비선형 감마 에러 개선 방법)

  • Kim, Woo Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.134-141
    • /
    • 2020
  • Optical three-dimensional (3D) measurement systems based on digital fringe projection are used in many contactless measurement applications. The system which can measure a dozen micrometers uses a liquid-crystal display (LCD) as the projection unit for generating a digital fringe pattern, because a flexible fringe pattern can be easily made by computer software. According to the gamma nonlinearity of the LCD projection unit, the digital fringe projection error on the object affects the accuracy of 3D object measurement. An improved method of LCD gamma-nonlinearity error reduction is proposed, by using the inverse function of the intensity transfer function to improve the accuracy. The improvement due to the proposed method is shown by measuring the difference in precision between a computer-generated sine wave and a camera-obtained sine wave for a standard semiconductor specimen.

A High-speed Digital Laser Grating Projection System for the Measurement of 3-dimensional Shapes

  • Park, Yoon-Chang;Park, Chul-Geun;Ahn, Seong-Joon;Kang, Moon-Ho;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • In the non-contact 3-dimensional (3D) shape measurements, the fringe pattern projection method based on the phase-shifting technique has been considered very effective for its high speed and accuracy. The digital fringe projector in particular has great flexibility in generating fringe patterns since the patterns can be controlled easily by the computer program. In this work, we have developed a high-speed digital laser grating projection system using a laser diode and a polygon mirror, and evaluated its performance. It has been demonstrated that all the optical measurements required to find out the profile of a 3D object could be carried out within 31 ms, which confirmed the validity of our 3D measurement system. The result implies the more important fact that the speed in 3D measurement can be enhanced remarkably since, in our novel system, there is no device like a LCD or DMD whose response time limits the measurement speed.

Development of Non-contact Image Measuring Technique for Evaluating Micro-relief (미세주름 측정을 위한 비접촉식 영상측정기술의 발전)

  • Kim, Nam-Soo;Kim, Yong-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.3 s.52
    • /
    • pp.253-257
    • /
    • 2005
  • Assurance of the objectivity and reproducibility is a major key point in wrinkle measurement used for evaluating the degree of skin aging. The measurement of relief is quickly converted to a non-contact method, of which tools or instruments do not come in contact with skin directly, to minimize the artificial effects which influence the shape or depth of the relief. Here, we showed how wrinkle measurement techniques have been changed briefly and compared PRIMOS and replica method in the point of view of measurement principle and features, the former is non-contact fringe projection tool and the latter is contact type of the method.

Frequency-Based Image Analysis of Random Patterns: an Alternative Way to Classical Stereocorrelation

  • Molimard, J.;Boyer, G.;Zahouani, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.181-193
    • /
    • 2010
  • The paper presents an alternative way to classical stereocorrelation. First, 2D image processing of random patterns is described. Sub-pixel displacements are determined using phase analysis. Then distortion evaluation is presented. The distortion is identified without any assumption on the lens model because of the use of a grid technique approach. Last, shape measurement and shape variation is caught by fringe projection. Analysis is based on two pin-hole assumptions for the video-projector and the camera. Then, fringe projection is coupled to in-plane displacement to give rise to 3D measurement set-up. Metrological characterization shows a resolution comparable to classical (stereo) correlation technique ($1/100^{th}$ pixel). Spatial resolution seems to be an advantage of the method, because of the use of temporal phase stepping (shape measurement, 1 pixel) and windowed Fourier transform (in plane displacements measurement, 9 pixels). Two examples are given. First one is the study of skin properties; second one is a study on leather fabric. In both cases, results are convincing, and have been exploited to give mechanical interpretation.

Real-time 3-D shape measurement system using harmonics error removed digital fringe projection (하모닉스 에러가 제거된 디지털 프린지 투영을 사용한 실시간 3차원 형태 측정시스템)

  • Park, Won-Kyu;Kim, Byoung-Jin;Koh, Kwang-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.629-632
    • /
    • 2010
  • 본 논문에서는 Fringe Pattern profilometry(FPP)을 이용한 높이 측정 시스템을 구현하고, R, G, B 각 컬러 채널별로 위상이 다른 파형을 인가함으로써 Phase shifting 방법을 이용한 실시간 위상 정보를 획득할 수 있게 한다. 디지털 프로젝터의 비선형성으로 인해 필연적으로 발생하는 하모닉스 성분을 근사화된 정현파를 인가함으로써 높이 정보에서 가장 큰 문제를 발생하는 2차 하모닉스 성분을 줄인다. 이렇게 구한 위상 값을 Digital Phase Loop Lock(DPLL)회로에 인가함으로써 3차원 모양 정보를 실시간으로 획득 가능하게 한다.

A Study on 3-D Shape Measurement and Application by using Digital Projection $Moir\acute{e}$ ( I ) (디지털 영사식 무아레를 이용한 3차원 형상 측정과 응용에 관한 연구( I ))

  • Ryu Weon-Jae;Rho Hyung-Min;Lee Dong-Hwan;Kang Young-June
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.88-93
    • /
    • 2005
  • $Moir\acute{e}$ topography method is a well-known non-contacting 3-D measurement method. Recently, the automatic 3-D measurement by $Moir\acute{e}$ topography has been required, since the method was frequently applied to the engineering and medical fields. The 3-D measurement using projection $Moir\acute{e}$ topography is very attractive because of its high measuring speed and high sensitivity. In this paper, using two-wavelength method of projection $Moir\acute{e}$ topography was tested to measuring object with $2\pi-ambiguity$ problems. The experimental results prove that the proposed scheme is capable of finding absolute fringe orders, so that the $2\pi-ambiguity$ problems can be effectively overcome so as to treat large step discontinuities in measured objects.