• Title/Summary/Keyword: Digital phase difference measurement

Search Result 26, Processing Time 0.028 seconds

Performance Analysis on Digital Phase Difference Measurement Techniques for Interferometer Direction Finder (인터페로미터 방향 탐지기의 디지털 위상차 측정 기법 성능 분석)

  • Kang, Jong-jin;Park, Sung-kyun;Roh, Ji-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1076-1082
    • /
    • 2018
  • This paper describes interferometer direction finder which measures the angle of arrival based on calculation of the phase difference of received radio signal from different antennas. Modern Electronic Warfare direction finder uses digital phase difference measuring techniques which have less effect on temperature variation and better performance under low Signal to Noise Ratio environment. In this paper, we analyze acceptable phase difference error for requirement of system's direction finding accuracy and introduce digital phase difference calculation techniques. We have investigated quantitative analysis on phase difference calculation according to sample number, SNR, interference injection. Through the simulation, frequency domain measurement technique is better performance than the time domain one at the environment of low SNR and interference injection. Proposed method can be used to determine the performance of interferometer direction finder.

Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We propose a digital holographic interference analysis method based on a 2-frame phase-shifting technique for measuring an optical mirror surface. The technique using 2-frame phase-shifting digital interferometry is more efficient than multi-frame phase-shifting techniques because the 2-frame method has the advantage of a reduced number of interferograms, and then takes less time to acquire the wanted topography information from interferograms. In this measurement system, 2-frame phase-shifting digital interferograms are acquired by moving the reference flat mirror surface, which is attached to a piezoelectric transducer, with phase step of 0 or $\pi$/2 in the reference beam path. The measurements are recorded on a CCD detector. The optical interferometry is designed on the basis of polarization characteristics of a polarizing beam splitter. Therefore the noise from outside turbulence can be decreased. The proposed 2-frame algorithm uses the relative phase difference of the neighbor pixels. The experiment has been carried out on an optical mirror which flatness is less than $\lambda$/4. The measurement of the optical mirror surface topography using 2-frame phase-shifting interferometry shows that the peak-to-peak value is calculated to be about $0.1779{\mu}m$, the root-mean-square value is about $0.034{\mu}m$. Thus, the proposed method is expected to be used in nondestructive testing of optical components.

GPS phase measurement cycle-slip detection based on a new wavelet function

  • Zuoya, Zheng;Xiushan, Lu;Xinzhou, Wang;Chuanfa, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.91-96
    • /
    • 2006
  • Presently, cycle-slip detection is done between adjacent two points in many cycle-slip methods. Inherently, it is simple wavelet analysis. A new idea is put forward that the number of difference point can adjust by a parameter factor; we study this method to smooth raw data and detect cycle-slip with wavelet analysis. Taking CHAMP satellite data for example, we get some significant conclusions. It is showed that it is valid to detect cycle-slip in GPS phase measurement based on this wavelet function, and it is helpful to improve the precision of GPS data pre-processing and positioning.

  • PDF

Q Factor Measurement System for a ATS Coil Using Digital Phase Locked Loop (디지털 PLL을 이용한 ATS 지상자 코일 Q 측정장치 개발)

  • 김기택;임기택;최정용;김봉택
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.368-375
    • /
    • 2000
  • For safety reason ATS(Automatic Train Stop) system is being used, which is a kind of communication system with a feedback amplifier and a transformer on the train and wayside coils. The coils are highly resonant LC circuits, also have very high Q(Quality) factors. The Q factors of wayside ATS coils are to be maintained high enough for the amplifier to operate reliably. In this paper a novel Q measurement system is proposed. The system measures the resonant frequency and the bandwidth of the ATS coils, by controlling the phase difference between the transformer and the coil using digital PLL(Phase Locked Loop). The overall configuration and algorithms of the proposed system and the digital PLL control schemes are presented in details. The experimental waveforms are shown to verify the system performances.

  • PDF

Design of Phase Locked Loop (PLL) based Time to Digital Converter for LiDAR System with Measurement of Absolute Time Difference (LiDAR 시스템용 절대시간 측정을 위한 위상고정루프 기반 시간 디지털 변환기 설계)

  • Yoo, Sang-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.677-684
    • /
    • 2021
  • This paper presents a time-to-digital converter for measuring absolute time differences. The time-to-digital converter was designed and fabricated in 0.18-um CMOS technology and it can be applied to Light Detection and Ranging system which requires long time-cover range and 50ps time resolution. Since designed time-to-digital converter adopted the reference clock of 625MHz generated by phase locked loop, it could have absolute time resolution of 50ps after automatic calibration and its cover range was over than 800ns. The time-to-digital converter adopted a counter and chain delay lines for time measurement. The counter is used for coarse time measurement and chain delay lines are used for fine time measurement. From many times experiments, fabricated time-to-digital converter has 50 ps time resolution with maximum INL of 0.8 LSB and its power consumption is about 70 mW.

Height Measurement by Refractive Index Difference and Digital Holography (굴절률 차이와 디지털 홀로그래피를 이용한 큰 단차측정)

  • Cho, Hyung-Jun;Kim, Doo-Cheol;Yu, Young-Hun;Shin, Sang-Hoon;Lee, Hyuk-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • Digital holography and refractive index difference are used to measure a high aspect ratio's patterns. When interference fringes are very closely spaced, the phase data containing high frequencies where $2{\pi}$ ambiguities cannot be resolved. In this technique, the optical path difference is decreased by decreasing the refractive index difference. As a result, we solve the $2{pi}$ ambiguities. Also, this technique is applicable to measure the refractive index if the shape of the sample is known.

An Adaptive Scheme for Frequency Measurement in Power System (적응기법을 이용한 전력계통의 주파수 측정)

  • Park, Cheol-Won;Nam, Si-Bok;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.143-152
    • /
    • 2002
  • Frequency is regarded as one of most important indices for the operating power systems. Several digital techniques for measuring frequency have been presented in the last decades. This paper proposes a design and implementation an adaptive scheme using phase angle difference calculation fort frequency measuring in power system. The advantages of the proposed technique are demonstrated by fault signals from EMTP simulation and user defined arbitrary signals by Excel program. The proposed technique is compared with the conventional methods. Performance teat results indicate that the proposed technique provides accurate measures in pretence of noise and harmonics and in case faults and is suitable for measurement near-nominal, nominal. and off-nominal frequencies. We can see that It will be useful in microprocessor based relays and digital metiers that need to measure power system frequency.

Two Step on-axis Digital Holography Using Dual-channel Mach-Zehnder Interferometer and Matched Filter Algorithm

  • Lee, Hyung-Chul;Kim, Soo-Hyun;Kim, Dae-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.363-367
    • /
    • 2010
  • A new two step on-axis digital holography (DH) is proposed without any assumptions, phase shifting, or complicated optical components. A dual-channel Mach-Zehnder interferometer was employed. Using that setup, the object field can be reconstructed requiring only two step measurements. To eliminate position difference between two charge-coupled device (CCD) cameras, a matched filter algorithm was used. Experimental results are compared to those of the traditional phase shifting technique. The proposed approach can also be applied to single-exposure on-axis DH for real time measurement.

Partial Discharge Properties of PET Film with Carbon Black

  • Lee, Young-Hwan;Lee, Jong-Chan;Park, Yong-Sung;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.1-4
    • /
    • 2004
  • This paper presents an investigation of the phase-resolved partial discharge (PD) pattern of PET (Poly Ethylene Telephthalate) films with carbon black particles. The phase-resolved PD pattern and statistical parameter from PET samples according to the number of included semiconductor particles were measured. The measurement system consisted of a conventional PD detector using a digital signal processing technique. The partial discharge patterns of the PET films that include the semiconductor particles were investigated to simulate an actual situation that may exist in the cable. In addition, difference of PD patterns between semiconducting particles in PET films and artificial voids was studied. The relationship between the numbers of semiconductor particles in PET films was discussed through the difference of Ψ-q-n distribution and statistical analysis.

Study on Implementation of a Digital Frequency Discriminator using 4 channel Delay line (4채널 지연선로를 이용한 디지털 주파수 판별기 구현에 관한 연구)

  • Kook, Chan-Ho;Kwon, Ik-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.512-515
    • /
    • 2010
  • SIGINT(SIGnal INTelligence) includes several parameters intercepted by measurement and analysis of the RF(Radio frequency) signal from free space. One of the important parameters is frequency information. Expecially, in order to perform instantaneous frequency measurement of Radar and Missile seeker's RF signals, we use dedicated RF modules as a DFD(Digital Frequency Discriminator) to provide frequency information by measurement of the relative phase difference between signals via intended RF delay lines. It must measure and provide realtime based frequency information on short pulsed RF signal up to 100 nSec or less. This document proposes Ultra wideband DFD consisted of a RF input section of Wideband 4 channel RF delay line and correlator, a digital processing section to measure and provide frequency information from I/Q signal, and a frequency calibration section. Also, it will show design suitability based on test results measured under test condition of very short input pulse signals.

  • PDF