• 제목/요약/키워드: Direct Fabrication

검색결과 480건 처리시간 0.033초

고분자전해질 연료전지의 MEA 제조방법에 따른 성능비교 (The effect of MEA fabrication procedure on PEMFC performance)

  • 조용훈;조윤환;박인수;최백범;정대식;성영은
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.291-295
    • /
    • 2005
  • The PEMFC behavior is quite complex and is influenced by several factors, including composition and structure of electrodes and membrane type. Fabrication of MFA is important factor for proton exchange membrane fuel cell. MFA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC wi th direct coat ing method was better than wi th hot pressing method because membrane internal resistance and membrane-:-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

고분자전해질 연료전지용 MEA 제조 및 특성평가 (Fabrication and Properties Analysis of MEA for PEMFC)

  • 조용훈;조윤환;박인수;성영은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.230-234
    • /
    • 2005
  • Fabrication of MEA is important factor for proton exchange membrane fuel cell (PEMFC). MEA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC with direct coating method was better than with hot pressing method because membrane internal resistance and membrane-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작 (Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing)

  • 우상구;이인환;김호찬;이경창;조해용
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Direct 반송방식에 기반을 둔 300mm FAB Line 시뮬레이션 (Direct Carrier System Based 300mm FAB Line Simulation)

  • 이홍순;한영신;이칠기
    • 한국시뮬레이션학회논문지
    • /
    • 제15권2호
    • /
    • pp.51-57
    • /
    • 2006
  • 현재 반도체 산업은 200mm 웨이퍼에서 300mm 웨이퍼 공정으로 기술이 변화하고 있다. 300mm 웨이퍼 제조업체들은 Fabrication Line (FAB Line) 자동화를 비용절감 실현의 방책으로 사용하고 있다. 또한 기술의 확산, 시장 경쟁력의 격화 등으로 생산성 향상에 의한 원가절감이 반도체 산업 성장의 근본요인이 되고 있다. 대부분의 반도체 업체들은 생산성을 높이기 위해 average cycle time을 줄이는데 총력을 기울이고 있다. 본 논문에서는 average cycle time을 줄이는 데 중점을 두고, 300mm 반도체 제조공정을 시뮬레이션 하였다.

  • PDF

레이저묘화 기술을 이용한 3차원 미세구조물 제조 (Fabrication of three dimensional microstructures using laser direct writing technique)

  • 정성호;한성일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.670-673
    • /
    • 2003
  • Fabrication of three dimensional microstructures by laser-assisted chemical vapor deposition of material is investigated. To fabricate microstructures, a thin layer of deposit in desired patterns is first written using laser direct writing technique and on top of this layer a second layer is deposited to provide the third dimension normal to the surface. By depositing many layers. a three dimensional microstructure is fabricated. Optimum deposition conditions for direct writing of initial and subsequent layers with good surface quality and profile uniformity are determined. Using an arson ion laser and ethylene as the light source and reaction gas, respectively, fabrication of three-dimensional carbon microstructures is demonstrated.

  • PDF

이온빔을 이용한 마이크로/나노 가공: 형상가공 (Ion Beam Induced Micro/Nano Fabrication: Shape Fabrication)

  • 김흥배
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.109-116
    • /
    • 2007
  • Focused ion beams are a potential tool for micro/nano structure fabrication while several problems still have to be overcome. Redeposition of sputtered atoms limits the accurate fabrication of micro/nano structures. The challenge lies in accurately controlling the focused ion beam to fabricate various arbitrary curved shapes. In this paper a basic approach for the focused ion beam induced direct fabricate of fundamental features is presented. This approach is based on the topography simulation which naturally considers the redeposition of sputtered atoms and sputtered yield changes. Fundamental features such as trapezoidal, circular and triangular were fabricated with this approach using single or multiple pass box milling. The beam diameter(FWHM) and maximum current density are 68 nm and $0.8 A/cm^2$, respectively. The experimental investigations show that the fabricated shape is well suited for the pre-designed fundamental features. The characteristics of ion beam induced direct fabrication and shape formation will be discussed.

나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구 (Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process)

  • 박상후;임태우;양동열
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

곡선형 형상적응형 냉각채널을 갖는 금형 코어 제작을 위한 DMT 공정개발 (Development of Direct Metal Tooling (DMT) Process for Injection Mold Core with Curved Conformal Cooling Channel)

  • 한지수;유만준;이민규;이윤선;김우성;이호진;김다혜;성지현;차경제
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.103-108
    • /
    • 2019
  • The cooling rate and the uniformity of mold temperature, in the injection molding process, possess great influences on the productivity and quality of replications. The conformal cooling channel, which is of a uniform spacing from the mold cavity by the metal additive manufacturing process, receives much attention recently. The purpose of this study is to develop a mold core with a curved conformal cooling channel for a pottery-shaped thick-wall cosmetic container through the hybrid method of direct metal tooling (DMT) process. In this study, we design a mold core that contains the curved cooling channel for the container. A method that divides the cavity is proposed and the DMT process is carried out to form the curved cooling channel. The test mold core, with the curved conformal cooling channel, has been fabricated by the proposed method to confirm the feasibility of the design concept. We show that no leakage is observed for the additive manufactured test mold core, and its physical properties demonstrate that it can be sufficiently used as the injection mold core.