• Title/Summary/Keyword: Dislocation Punching

Search Result 4, Processing Time 0.016 seconds

Numerical Assessment of Dislocation-Punching Theories for Continuum Structural Analysis of Particle-Reinforced Metal Matrix Composites (입자 강화 금속기지 복합재의 연속체 강도해석을 위한 전위 펀칭 이론의 전산적 평가)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.273-279
    • /
    • 2011
  • The yield strength of particle-reinforced composites increases as the size of the particle decreases. This kind of length scale has been mainly attributed to the geometrically necessary dislocation punched around the particle as a result of the mismatch of the thermal expansion coefficients of the particle and the matrix when the composites are cooled down after consolidation. In this study, two dislocation-punching theories that can be used in continuum structural modeling are assessed numerically. The two theories, presented by Shibata et al. and Dunand and Mortensen, calculate the size of the dislocationpunched zone. The composite yield strengths predicted by finite element analysis were qualitatively compared with experimental results. When the size of the particle is less than $2{\mu}m$, the patterns of the composite strength are quite different. The results obtained by Shibata et al. are in qualitatively better agreement with the experimental results.

Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity (변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링)

  • Suh, Yeong-Sung;Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.745-751
    • /
    • 2011
  • This study proposes finite element modeling of dislocation punching at cooling after consolidation in order to calculate the strength of particle-reinforced aluminum composites. The Taylor dislocation model combined with strain gradient plasticity around the reinforced particle is adopted to take into account the size-dependency of different volume fractions of the particle. The strain gradients were obtained from the equivalent plastic strain calculated during the cooling of the spherical unit cell, when the dislocation punching due to CTE (Coefficient of Thermal Expansion) mismatch is activated. The enhanced yield stress was observed by including the strain gradients, in an average sense, over the punched zone. The tensile strength of the SiCp/Al 356-T6 composite was predicted through the finite element analysis of an axisymmetric unit cell for various sizes and volume fractions of the particle. The predicted strengths were found to be in good agreement with the experimental data. Further, the particle-size dependency was clearly established.

Effect of overpressurization on rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.67-73
    • /
    • 1997
  • By introducing the concept of overpressurization of rim pores due to dislocation punching, the total pressure exerted on the rim pores is estimated. Then this concept is combined with the assumption that all the fission gases produced in the rim region are retained in the rim region to calculate the rim porosity. Rim porosities calculated in this way are compared with measured data, which produces reasonable agreement. Finally a correlation for the thermal conductivity of the rim region is obtained using the hypothesis that the rim region consists of pores and fully dense material of UO$_2$.

  • PDF

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.