• Title/Summary/Keyword: Dispersed Two-phase Flow

Search Result 44, Processing Time 0.029 seconds

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

Study on the numerical models of turbulent dispersion of solid particles in a two-phase turbulent jet flow (이상난류제트 유동에서 고체입자 난류확산의 수치모델에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispesed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phaes turbulent flow.

Experimental Studies on Phase Separation of Steam-Water Two Phase Flow in Horizontal Y-Branching Conduit (수평Y자형 분지관에서 증기-물 이상류의 상분리에 관한 실험적 연구)

  • Ahn, Soo-Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.886-893
    • /
    • 2000
  • The Characteristics of dividing the dispersed bubble, plug, and slug steam-water flow in the horizontal junctions with horizontal branches have been experimentally investigated. The experimental investigation of the separation phenomena in a $45^{\circ}$ horizontal wye with equal pipe inner diameter of 25 mm is presented to provide a data base for the development and verification of the analytical models. The phase separation and pressure distribution in the three legs of each test section are obtained through the set of measurements made in the present work. And the dependence of phase separation on different parameters, such as inlet quality and mass flux, is discussed.

A Study on the Improvement of Dynamic Characteristics of Spindle-Work System in Lathe - Focused on the Bolt Juint between Headstock and Bed - (선반주축계의 동특성 향상에 관한 연구 -주축대와 베드의 보울트 결합을 중심으로-)

  • 신용호;박태원;홍동표;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispersed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phases turbulent flow.

Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater (단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구)

  • Park, Youngjae;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

Study on the Morphology Evolution of PS/HDPE Blend During Uniaxial Elongational Flow (일축신장흐름에서의 PS/HDPE Blend의 모폴로지 변화에 관한 연구)

  • Hong, Jung-Sook;Son, Jung-Wu;Lee, Seung-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2001.06a
    • /
    • pp.11-14
    • /
    • 2001
  • Our study have aimed to identify the deformation and breakup mechanism of minor phase in polymer blends under uniaxial enlongational flow. Experimentally, we measured the transient elongational viscosity of PS/HDPE blends using the uniaxial elongational rheometer at two temperatures. And we observed the evolution of blend morphology with elongation time. Morphological change was observed by quenching the specimen after deformation. If the viscosity variation of PS was compared with that of HDPE at each temperature, PS showed larger temperature dependence than HDPE. At 155$^{\circ}C$, the dispersed phase of larger size were easily affected by affine deformation. The initial spherical shape changed to flat ellipsoid at first, then flat ellipsoid to bulbous shape, and bulbous to thin thread and its satellites. But dispersed phase of smaller size showed the change from sphere to ellipsoid. At 175$^{\circ}C$, the dispersed phase were mostly deformed from spherical shape to ellipsoid. As a result, the morphological change of dispersed phase in elongational deformation is affected by chain flexibility and viscosity ratio. We need to further study to make sure the mechanism of elongation of viscoelastic polymer blends.

  • PDF

A Study on the Interaction between Particles and Surrounding Fluid (입자와 주위유체와의 상호작용에 관한 연구)

  • ;T.Kurihara;H. Monji;G. Matsui
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.108-115
    • /
    • 2002
  • The fundamental mechanism of a dispersed two-phase flow was investigated. Experiments were carried out to understand how the particles behaves under the influence of the particle size, shape, metamorphoses (bubble) and buoyancy of a single particle which is ascending from the standstill water. Two CCD cameras were employed for image processing of the behavior of the particles and the surrounding flow, which was interpreted with the technique of correlation PIV (Particle Image Velocimetry) and PTV (Particle Tracking Veloci- metry), respectively The experimental results showed that the large density difference bet- ween a particle and water caused high relative velocity and induced zigzag motion of the particle. Furthermore, the turbulence intensity of a bubble was about twice the case of the spherical solid particle of similar diameter.

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model (2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.714-724
    • /
    • 1985
  • Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF