• Title/Summary/Keyword: Dispersivity

Search Result 49, Processing Time 0.021 seconds

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.

창원지역 화강암의 수리분산 특성

  • 김무진;함세영;황한석;김문수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.187-190
    • /
    • 2001
  • This study is concerned with the hydrodispersive characteristics of granite in Changwon area. A single-well injection/recovery tracer test was conducted to determine longitudinal dispersivity of the granite, using sodium chloride tracer The dispersivity values obtained from the injection phase are 0.48 m (for between PW-1 and OW-3) and 0.72 m (for between PW-1 and OW-4). That obtained from the recovery phase is 0.68 m. The result of the tracer test indicates that the anisotropy and heterogeneity of the granite and the direction of flow.

  • PDF

Finite Difference Modeling for Scale-Dependent Dispersivity in a Fractured Medium

  • Han, Choongyong;Kang, Joe M.;Choe, Jonggeun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.102-105
    • /
    • 2002
  • A new finite difference model is developed for solute transport in a fractured medium that can consider advection, adsorption, first-order decay, and scale-dependent dispersivity of individual fractures. In the model, the dispersivity of individual fractures is employed as a variable increasing with travel distance from a source. The model is verified using an analytical solution for a single fracture. A solution from the new model is independent of the outlet boundary condition of fractures, and has little numerical dispersion error.

  • PDF

Change of Seawater Intrusion Range by the Difference of Longitudinal Dispersivity in Hydrodynamic Modeling (수리동역학적 모델링에서 분산지수에 따른 해수침투 범위의 변화)

  • 심병완;정상용;김희준;성익환
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.59-67
    • /
    • 2002
  • As a parameter for hydrodynamic modeling to define the range of seawater intrusion, dispersivities are frequently determined from pre-experiments or theoretical studies because field experiments need a lot of time and expenses. If the dispersivities are inadequate for an aquifer, the numerical results may have some errors. We examined the validity of longitudinal dispersivities by comparing the ranges of seawater intrusion with numerical modeling, field data and apparent resistivity sections. In the numerical modeling the TDS distributions simulated by the Xu's longitudinal dispersivity are more similar to the values of TDS measured at monitoring wet]s and boreholes than those by the Neuman's longitudinal dispersivity. The ranges of seawater intrusion by numerical simulations using Xu's longitudinal dispersivity show that the contour line of 1000 ㎎/L. as TDS is located at 480 m from the coast in May, while at 390 m in July. The difference is originated from the shift of the interface between seawater and fresh water. It moved toward the coast in July because of the seasonal increase of hydraulic gradient according to rainfall. A contour line of 15 ohm-m was used to define the range of seawater intrusion in apparent resistivity sections. From this criterion on the interface between seawater and fresh water, the range of seawater intrusion is located at 450 m from the coast. This result is similar to the range of seawater intrusion simulated by the numerical modeling using Xu's dispersivity. Therefore the range of seawater intrusion shows the difference due to the dispersivities used for the hydrodynamic modeling and the dispersivity generated by the Xu's equation is considered more effective to decide the range of seawater intrusion in this study area.

DEVELOPMENT OF A NEW MODEL FOR NONLINEAR-DISPERSIVE WAVES OVER ARBITRARY DEPTHS

  • Nadaoka, Kazuo
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.5-11
    • /
    • 1998
  • Wave nonlinearity and dispersivity have mutually counteracting effects on the wave evolution process; i.e., the former makes the wave profile steeper, while the latter milder. Therefore to describe evolution of nonlinear water waves under general condition such as nonlinear random waves over arbitrary depths, both the wave nonlinearity and dispersivity must be properly taken into account in the wave modeling. (omitted)

  • PDF

An experimental study on the correlation of hydraulic mean radius and hydrodispersive parameters in rockfill porous media (자갈 다공성매질에서 수리평균반경과 수리분산 매개변수의 상관성에 관한 실험적 연구)

  • Han, Ilyeong;Lee, Jaejoung;Kim, Gyoo Bum
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.863-873
    • /
    • 2021
  • The mechanical dispersion which dominates solute transport in porous media is caused by the difference in flow velocity within pores. Longitudinal dispersion coefficient and longitudinal dispersivity that are hydro-dispersive parameters of advection-dispersion equation can only be obtained by experiment. Hydraulic mean radius that represents the amount and intensity of flowing water within pores can be obtained by the formula using the factors for physical properties. A slug injection test was conducted and a power type empirical formula for obtaining a longitudinal dispersivity using a hydraulic mean radius in rockfill porous media was derived. It is possible to obtain the longitudinal dispersivity depending on transport distance because it contains a formula for a scale constant, and expected to be applicable to waterways filled with homogeneous gravel and small flow rate.

Effects of Hydraulic Variables on the Formation of Freshwater-Saltwater Transition Zones in Aquifers

  • Park, Nam-sik
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.1-8
    • /
    • 1996
  • The location and the shape of a freshwater transition zone in a coastal aquifer are affected by many hydraulic variables. To data most works to determine the effects of these variables are limited to qualitative comparison of transiton zones. In this work characteristics of transition zones are analyzed quantitatively. The investigation is limited to a steady-state transition zones. Three dimensionless variables are defined to represent characteristics of steady-state transition zones. They are maximum introsion length, thickness, and degree of stratification. Effects of principal hydraulic variables (velocity and dispersivity) on these characteristics are studied using a numerical model. Dimensional analysis is used to systematically analyze entire model results. Effects of velocity and dispersivity are seem clearly. From this study, increase in velocity is found to cause shrinkage of transition zones. This observation contradicts claims by some that, because dispersion is proportional to velocity, increase in velocity would cause expansion of transition zones.

  • PDF

Analyses on Solute Transport with the Movement of an LNAPL on the Water Table (지하수면 위의 LNAPL 이동을 고려한 용질이동에 대한 분석)

  • 김지훈;최종근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • A modified model was developed for solute transport in porous media that can consider the movement of an LNAPL above the water table. From the results of sensitivity analyses with and without considering LNAPL movement, there are some differences according to the hydraulic gradient, the quantity of oil leakage and dispersivity. The mean deviation between the model in this study and a conventional model without LNAPL movement increases as the hydraulic gradient decreases and the quantity of oil leakage increases. Variation of dispersivity has no influence on the magnitude of the mean deviation. However, the spatial distribution of the deviation between the two models is wider as dispersivity increases. Furthermore, groundwater is at high risk of contamination in the vertical direction in the case that transverse dispersion value is large. A conventional model underestimates the concentration of solute in an aquifer where the movement of an LNAPL cannot be negligible: Based on the study results, it is important to understand how fast the LNAPL moves on the water table for realistic prediction of solute transport in an aquifer with the movable LNAPL on the water table.

The Characteristic and Control of Contaminant Transport through the Subsurface of Nanjido Landfill (난지도 매립장 지반을 통한 오염이동 특성과 제어)

  • 장연수;이광열
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 1994
  • The contaminant migration through the subsurface of Nanjido landfill is studied using a 2-D finite element model of contaminant transport. The leachate mounding caused by the installation of partial slurry wall around the pheriperal area of the Landfill is analysed using the finite difference model of groundwater flow. Model parameters were validated using in-situ concentration data and the behavior of the transport next 30 years is predicted. The sensitivities of chloride concentration by the change of model parameters, e.g. leachate mounding in the Landfill and the dispersivity are analysed. The results of the analyses show that the maximum chloride concentration level near Han River caused by the leachate of Nanjido Landfill would be 1488mg/1 and comes 17 years after the landfill closure. Increase of the leachate concentration is caused by the increase of both the leachate mounding and the dispersivity. However, the rate of concentration increase becomes higher with the rise of leachate mounding level, while it tends to converge a certain concentration with the increase of the dispersivity.

  • PDF

Calculation of the Dispersion Coefficient by the Dissolution Experiment of DNAPL Pool (DNAPL Pool의 용해실험에 의한 분산계수 산정)

  • 정경영;배열호;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Nonaqueous phase liquids(NAPL) not readily dissolved in water exist as a separate fluid phase. Groundwater contamination by NAPL such as organic solvents and petroleum hydrocarbons becomes major public concerns because of their long-term persistence in the subsurFace and their ability to contaminate large volumes of wate. Dense.-than-water NAPL(DNAPL) spilled into the subsurface penetrate through the saturated zone and ultimately form DNAPL pools on the bottom of the aquifer. The dissolution of DNAPL from these pools depends on the molecular diffusion coefficient, the vertical dispersivity, the groundwater velocity, the solubility, and the pool length. In this study, the vertical transverse dispersion coefficients for simulating the dissolution of DNAPL from such pools were obtained from the dissolution experiment. Under the experimental conditions used, the vertical transverse dispersion coefficients calculated were 1.86$cm^2$/day, 2.90$cm^2$/day and 4.51$cm^2$/4ay for seepage velocities of 59.2cm/day, 94.3cm/day and 158.0cm/day, respectively. And the vertical transverse dispersivity was 0.03024cm.

  • PDF