• Title/Summary/Keyword: Displacement Function

Search Result 1,000, Processing Time 0.039 seconds

Forecasting Final Displacement With Displacement Functions Using Deformation Measurements While Constructing a Tunnel (계측치와 변위함수에 의한 시공 중인 터널의 최종변위 예측)

  • Kim, Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.408-420
    • /
    • 2010
  • It is important to forecast the final deformation of a tunnel during construction for evaluating its mechanical stability. In this study, the final deformation of a tunnel is forecasted by fitting tunnel deformations measured while excavating to a displacement function and exterpolating it. The tunnel for the study was built in two stages divided into an upper and a lower part. During the lower part construction of the tunnel, the displacement function forecasts the final incremental displacement well compared to the increment measured after completion of the tunnel. It is because the critical initial displacement occurred on passing the measurement pins can be adequately measured during excavating the lower part, which can not be measured during the upper part excavation of the tunnel.

A Study of Lianis Model for Elastomeric Bushing in Axial Mode (일래스토메릭 부싱의 축방항모드에 대한 리아니스 모델연구)

  • Lee, Seong-Beom
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • An elastomeric bushing which has been considered in this research is a device used in automotive suspension systems to reduce the forte transmitted iron the wheel to the frame of the vehicle. A bushing is modeled at a hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. Lianis constitutive equation for a nonlinear viscoelastic incompressible material is used to model the elastomeric material of the bushing. It is used to derive a force-displacement relation for axial response of the bushing. The displacement dependent force relaxation function for the bushing is obtained from the ramp displacement control tests with an extrapolation method. This is compared with the exact result obtained from the step displacement control test and the results are in very good agreement.

Weight Function Theory for Piezoelectric Materials with a Crack (균열을 가진 압전재료에서의 가중함수이론)

  • 손인호;안득만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.208-216
    • /
    • 2003
  • In this paper, a two-dimensional electroelastic analysis is performed on a piezoelectric material with an open crack. The approach of Lekhnitskii's complex potential functions is used in the derivation and Bueckner's weight function theory is extended to piezoelectric materials. The stress intensity factors and the electric displacement intensity factor are calculated by the weight function theory.

Weight Function Theory for Piezoelectric Materials with Crack in Anti-Plane Deformation (균열을 가진 압전재료에 대한 면외 변형에서의 가중함수이론)

  • Son, In-Ho;An, Deuk-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • In this paper, an electroelastic analysis is performed on a piezoelectric material with an open crack in anti-plane deformation. Bueckner’s weight function theory is extended to piezoelectric materials in anti-plane deformation. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

Multimetric Measurement Data Monitoring System Using Sigmoid Function (시그모이드 함수를 이용한 다중 계측데이터 모니터링 시스템)

  • Jeong-Ho Song;Jun-Woo Shin;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.137-149
    • /
    • 2023
  • In order to intuitively grasp the earth pressure direction acting on the structure and displacement state, displacement data in the horizontal and vertical directions were processed using the sigmoid function. A displacement coordinate system was set up for each axis. The system can intuitively check the current displacement and assess the management stage of each point. A displacement path can be compiled from continuously recorded points, allowing trends in the displacement's history and stress direction to be known. Analysis of data measured for excavated ground, found that displacement occurred in the direction of destressing at all points, and that the points' management state steady. Similar behavior trends were found among measurement points with high spatial correlation, whereas differing behavior trends occurred among measurement points with low spatial correlation. If the correlation analysis of the precursor and behavior area is performed using the continuously distributed surface settlement data and displacement coordinate system, it will be possible to predict the failure time and area.

A refined discrete triangular Mindlin element for laminated composite plates

  • Ge, Zengjie;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.575-593
    • /
    • 2002
  • Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the element displacement function, the exact displacement function of the Timoshenko's laminated composite beam as the displacement on the element boundary is used to derive the element displacements. The proposed element can be used for the analysis of both moderately thick and thin laminated composite plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples presented show that the present model indeed possesses the properties of higher accuracy for anisotropic laminated composite plates and is free of locking even for extremely thin laminated plates.

Easy function for solving linear elasticity problems

  • Rezaiee-Pajand, Mohammad;Karimipour, Arash
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.335-348
    • /
    • 2022
  • It is well known that after finding the displacement in the structural mechanics, strain and stress can be obtained in the straight-forward process. The main purpose of this paper is to unify the displacement functions for solving the solid body. By performing mathematical operations, three sets of these key relationships are found in this paper. All of them are written in the Cartesian Coordinates and in terms of a simple function. Both analytical and numerical approaches are utilized to validate the correctness of the presented formulations. Since all required conditions for the bodies with self-equilibrated loadings are satisfied accurately, the authors' relations can solve these kinds of problems. This fact is studied in-depth by solving some numerical examples. It is found that a very simple function can be used for each formulation instead of ten different and complex displacement potentials defined by previous studies.

Theoretical Analysis of Levers in a Precision Stage for Large Displacement (정밀 스테이지에서 출력변위 확대를 위한 레버의 해석)

  • 황은주;민경석;송신형;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.720-723
    • /
    • 2004
  • Lever mechanisms are usually employed to enlarge output displacement in precision stages. In this study, theoretical analysis of a lever is presented including bending effect and relation between dimension parameters and an objective function. The objective function is chosen as multiplication of magnification ratio and forcedisplacement transmission. Through theoretical analysis, this study presents optimal values for the parameters and the analysis is verified by finite element method.

  • PDF

Progressive fracture analysis of concrete using finite elements with embedded displacement discontinuity

  • Song, Ha-Won;Shim, Byul;Woo, Seung-Min;Koo, Ja-Choon
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.591-604
    • /
    • 2001
  • In this paper, a finite element with embedded displacement discontinuity which eliminates the need for remeshing of elements in the discrete crack approach is applied for the progressive fracture analysis of concrete structures. A finite element formulation is implemented with the extension of the principle of virtual work to a continuum which contains internal displacement discontinuity. By introducing a discontinuous displacement shape function into the finite element formulation, the displacement discontinuity is obtained within an element. By applying either a nonlinear or an idealized linear softening curve representing the fracture process zone (FPZ) of concrete as a constitutive equation to the displacement discontinuity, progressive fracture analysis of concrete structures is performed. In this analysis, localized progressive fracture simultaneous with crack closure in concrete structures under mixed mode loading is simulated by adopting the unloading path in the softening curve. Several examples demonstrate the capability of the analytical technique for the progressive fracture analysis of concrete structures.

A Study on the Hydraulic Cylinder with built-in Displacement and Thrust Control Function

  • Kitagawa, Ato;Wu, Chunnan;Park, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1157-1161
    • /
    • 2003
  • A novel actuator with built-in the displacement and the thrust control function is presented in this paper. This actuator is a kind of compact hydraulic cylinder system which consists of a hydraulic cylinder, a spool, a sleeve, a mechanical feedback mechanism and a stepping motor. The displacement and thrust is in proportion to the rotational angle of stepping motor by the mechanical feedback. In order to investigate characteristics of this actuator, simulation study and preliminary experiments are conducted. Through the preliminary experiment this actuator is very effective in the control for displacement and thrust. Also, it became obvious that the stability of system can be adjusted by using the restrictor with the effect of velocity feedback. Furthermore, this paper explained that a flexible compliance control could be realized by adjusting the feedback weighting in the actuator.

  • PDF