• Title/Summary/Keyword: Dissolved-oxygen-stat

Search Result 12, Processing Time 0.029 seconds

Development of a Portable Potentiostat with Wireless Communications for Measuring Dissolved Oxygen (용존산소 측정을 위한 무선통신 기반 휴대형 포텐쇼스탯 개발)

  • Lee, Hyun-Seok;Han, Ji-Hoon;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1641-1647
    • /
    • 2018
  • In this paper, we describe a portable potentiostat which is capable of cyclic voltammetry(CV) and amperometry for electrochemical dissolved oxygen sensor. In addition, this portable potentiostat can also transmit the measured data wirelessly to android devices such as smart phone, tablet, etc. through Bluetooth. The potentiostat system consists of three parts; a voltage generator circuit which is controlled by Arduino nano and 12-bit DAC(digital to analog converter) to generate necessary electric potential for operating the electrochemical sensor, an oxidation/reduction current measurement circuit, and a Bluetooth module to transmit data wirelessly to an android device. Once measurements are carried out with the android application, the measured data is transmitted to the android device via Bluetooth and displayed using the android app. in real time. In this paper, we report the measured reduction current with a fabricated dissolved oxygen sensor in both saturated-oxygen state and zero-oxygen states. The results of the developed portable potentiostat system are in good agreement with those of the commercial portable potentiostat (${\mu}stat200$, Dropsens inc.). The measured peak reduction currents using the developed potentiostat and the commercial ${\mu}stat200$ potentiostat were $-0.755{\mu}A$ and $-0.724{\mu}A$, respectively. The reduction currents measured at zero-oxygen state were $-0.005{\mu}A$ and $-0.004{\mu}A$. The discrepancy between those two systems seems very small, which implies successful development of a portable and wireless potentionstat.

Candida magnoliae에 의한 erythritol 생산을 위한 유가식 공정의 개발

  • Park, Chang-Yeol;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.53-56
    • /
    • 2000
  • Two-stage fed-batch culture was peformed to improve the volumetric productivity of erythritol. In the growth phase dissolved oxygen was maintained to 20% and the feed medium was automatically supplied to the fermenter by pH-stat mode. The cell yield was 0.76 g-cell/g-glucose. In two-stage fed-batch culture, 41% of total erythritol conversion yield with 187 g/L of erythritol concentration and 2.79 g/L-h of maximum erythritol Productivity were obtained when 400 g/L of glucose was directly added in the form of non-sterile powder at production phase. The erythritol productivity increased in parallel with cell mass. The metabolic shift in the biosynthetic pathway of erythritol was caused by dissolved oxygen concentration. The production of gluconic acid was observed when the dissolved oxygen in the medium was maintained over 40% during the production phase, whereas the dissolved oxygen concentration lower than 40% caused the production of citric acid. But the butyric acid was produced independently with dissolved oxygen concentration in the medium. The production of organic acids such as gluconic acid, citric acid, and butyric acid was decreased by addition of mineral salts.

  • PDF

Methanol induction strategy using the two-loop control-based DO-stat and its application to repeated induction in methylotrophic yeast Pichia pastoris

  • Choe, Seung-Jin;Im, Hyeong-Gwon;U, Seong-Hwan;Jeong, Gyeong-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.333-335
    • /
    • 2001
  • A simple control strategy of DO-stat was introduced to the recombinant rGuamerin production process in Pichia pastoris. This induction strategy consisted of two interrelated control loops ‘by which oxygen ratio of inlet gas and methanol feeding rate was controlled. Using this control strategy, over-feeding or under-feeding of methanol could be avoided in concomitance with the efficient control of dissolved oxygen level. As a result, the cell concentration reached 130 g/L and rGuamerin expression level was 450 iu/L, which was more than 40% increased result comparing with the fed-batch process using manual control of methanol feeding rate.

  • PDF

On-Line Estimation of Cell Growth from Agitation Speed in DO-Stat Culture of a Filamentous Microorganism, Agaricus blazei

  • Na, Jeong-Geol;Kim, Hyun-Han;Chang, Yong-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.571-575
    • /
    • 2005
  • A simple, but effective on-line method for estimating the mycelial cell mass concentration from agitation speed data, a most readily-available process variable, has been developed for DO-stat cultures of Agaricus blazei. The dynamic change of dissolved oxygen concentration (DOC) in the initial transient period and the change in yield were considered in the development of the estimation algorithm or estimator. Parameters in the estimation algorithm were calculated from the agitation speed data at 20% of DOC. The proposed estimator could accurately predict the cell mass concentration regardless of DOC levels in the tested range of $10{\sim}40%$, showing a good extrapolation capability.

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

High Cell Density Cultivation of Pseudomonas putida BM01 Using Glucose

  • Kim, Guk Jin;In Young Lee;Dae Keon Choi;Sung Chul Yoon;Young Hoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.221-224
    • /
    • 1996
  • Pseudomonas putida BM01 was grown efficiently on glucose as the sole carbon source with a supply of a nitrogen source in pH-stat mode using a low setpoint limit. A final cell concentration of 100 g/l was obtained in 30 h of fed-batch cultivation by controlling glucose concentration within the range of 5-20 g/l and maintaining dissolved oxygen tension above 10$%$ saturation using pure oxygen. This high cell density culture technique is believed highly useful for the production of poly(3-hydroxyalkanoates) by this strain.

  • PDF

High Concentrated Spore Production of Bacillus thuringliensis by Fed-Batch Processes (유가식 배양공정에 의한 Bacillus thurngiensis의 고농도 포자생산)

  • 박창열;유연우
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • Both the production of high spore concentration and high insecticidal activity are required in the production of Bacillus thuringiensis to be used for the bacterial insecticide. In the production of high cell and spore concentrations of B. thuringiensis the continuous fed-batch culture(CFBC) and intermittent fed-batch culture(IFBC) were investigated at $28^{\circ}C$ by maintaining 40% dissolved oxygen concentration. When the final glucose concentration was 50 g/L the maximum viable cell number obtained using the CFBC with linear gradient feeding was $9.37{\times}109$ cells/mL and maximum spore concentration was $8.33{\times}109$ spores/mL which was approximately 84.4% yield of spore formation. When the final glucose concentration was 100 g/L the aximum viable cell and spore concentrations obtained using the IFBC with pH-statb were $1.38{\times}$1010 cells/mL and $1.35{\times}1010$ spores/mL respectively and the yield of spore formation was approximately 97.8%.

  • PDF

Increasing Cell Concentration by the Automatic Addition of Glucose, Ammonium and Phosphate in the Cultivation of a Baker′s Yeast in Alcohol Distillery Wastewater (알콜증류폐액을 이용한 빵효모배양에서 포도당, 암모늄 및 인산의 자동첨가에 의한 증균)

  • 이형춘
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.197-201
    • /
    • 2003
  • Automatic addition of glucose, ammonium and phosphate to alcohol distillery wastewater and their control at low concentrations have been carried increase the cell concentration of a baker's yeast cultivated in the wastewater. Glucose was automatically added using dissolved oxygen as the control parameter, and maintained below 300 mg/L. Ammonium was automatically added by a pH-stat method and maintained in the low range of 12.6~17.4 mM. An automated FIA system, which used an ascorbic acid-based method was developed for the automatic analysis nad addition of phosphate. With this system, the phosphate concentration was succesfully analysed and controlled afrer 19.4 hr in the range 23.3~43.4 mg/L. The cell concentration was increased by 33.0-fold by the addition of these three nutrients. The overall specific growth rate of the yeast was 0.19 $hr^{-1}$.

Two-Step Fed-Batch Culture of Recombinant Escherichia coli for Production of Bacillus licheniformis Maltogenic Amylase

  • Kim, Myoung-Dong;Lee, Woo-Jong;Park, Kwan-Hwa;Rhee, Ki-Hyeong;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.273-278
    • /
    • 2002
  • Two-step fed-batch fermentations were carried out to overproduce Bacillus licheniformis maltogenic amylase (BLMA) in recombinant Escherichia coli. The first step was to increase the cell mass by controlling the feeding of a glucose solution, while the second step was designed to improve the amylase expression efficiency by supplementing organic nitrogen sources. The linear gradient feeding method was successfully adopted to maintain the glucose concentration below 0.2 g/l during the fed-batch mode, as effectively minimizing acetic acid formation. When the dissolved oxygen (DO) level became limiting, an accumulation of acetic acid and drastic decrease in specific BLMA productivity were observed. Glucose and organic nitrogen sources consisting of yeast extract and casein hydrolysate were simultaneously supplied in the pH-stat mode to further increase the specific BLMA expression efficiency. An organic nitrogen source consisting of 200 g/1 yeast extract and 100 g/1 casein hydrolysate was found to be the best among the various combinations tested. The feeding of an organic nitrogen source in the second-step fed-batch period was highly beneficial in enhancing the BLMA production. The optimized two-step fed-batch culture resulted in 78 g/l maximum dry cell mass and 443 U/ml maximum BLMA activity, corresponding to 1.5-fold increase in the dry cell mass and 3.7-fold enhancement in BLMA production, compared with the simple fed-batch fermentation.