• Title/Summary/Keyword: Distribution line

Search Result 2,919, Processing Time 0.033 seconds

Analysis of Lighting Overvoltage and Induced Voltage of Neutral Line on the 22.9kV Combined Distribution Line (22.9kV 혼합배전선로의 뇌과전압 해석 및 중성선 유기 전압 해석)

  • Hong, Dong-Suk;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.510-512
    • /
    • 2000
  • This paper describes the voltage induced at neutral line and the proper location of lightning arrester in combined 22.9 kV class distribution line jointed overhead line and cable each other Modeling is established in ATP Draw to perform simulation. Simulated distribution line at this paper consists of distribution line 4.2km and underground distribution line 2km. Overvoltage and induced voltage are analyzed at several point of combined line. Analysis results was compared to select the best point to install arrester. Such analysis technology will be applied to obtaining capacity and location of arrester in the similar combined distribution line.

  • PDF

Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line (22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

A Study on the Adequacy Analysis of Distribution Line Drop for Improvement of Consumer Voltage Fluctuation (수용가 전사변동의 개선을 위한 배전선로의 적정성해석에 관한 연구)

  • 김은배;정상흔
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.7
    • /
    • pp.11-17
    • /
    • 1982
  • In this paper, a reliable and convenient evaluation method for the adequacy of any radial distribution line's voltage drop is proposed for improvement of the voltage regulation of the distribution line under operation. Using the voltage measurement of the first load branch point and the last point on the given distribution line its average line voltage drop and the line voltage drop variance by pure load variation are computed. And by these values and allowable or required line drop from proper voltage regulation view point, present adequency index and operation improvement index of the line drop are newly introduced for the evaluation of the given distribution line's voltage regulation. As a result of application to the 4 cases of study, the proposed method is proved to be reliable and convenient.

  • PDF

Analysis and Applicability Assessment of Robotic Live-Line Electricity Distribution Technology (로봇을 활용한 배전 활선공법 기술분석 및 적용 타당성 연구)

  • Yang, Seon-Je;Kuc, Tae-Yong;Park, Choon-Sik;Seo, In-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1125-1140
    • /
    • 2018
  • This paper analyzes robotic technology developed for live-line electricity distribution and its applicability to domestic environment. In doing so, available robotic systems developed for the live-line work are thoroughly investigated and compared in terms of from robotic functionality to economic feasibility. To assess the technology readiness for domestic live-line robot, the rubber gloves based direct live-line engineering methods have been also analyzed and mapped into robotic technology requisites. The results are expected as a fundamental data to help with solving the safety and economics issues when considering development and introduction of compact live-line robot for complex domestic electricity distribution environment.

A Study on the Risk Reduction of Distribution Line through Analysis of Electric Shock Accident (감전재해 분석을 통한 배전선로의 위험성 저감에 관한 연구)

  • Byeon, Junghwan;Choi, Sang-won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.14-20
    • /
    • 2018
  • In this study, we analyze the current status of major disasters in distribution works and propose safety measures through the distribution live-line work method and electric shock risk assessment. The result of analyzing the ratio of electric shocks to the occurrence of industrial accidents in the recent 13 years shows that the death rate is higher than other industries, especially the construction industry occupying most of the disaster, and it is higher than the collapse disaster. We analyze statistic data of 101 victims selected as core words of live work, distribution line, pole and 22.9 kV in the investigation report of major accident of electric shock fatal from 2001 to 2014. The safety measure was established through the risk assessment of the distribution method using the standard model of the risk assessment based on the results of electric shock analysis on the distribution line. In order to prevent the electric shock accident which is recently being discussed, the risk assessment procedure were carried out in the above-mentioned 22.9kV special high voltage live-line operation method. We derived the risk reduction plan for the distribution line from the results of the major accidents statistic and demonstration of the line works.

The characteristic of leakage current of ZnO block varistor according to fault conditions of three-phase four-wire distribution system (3상 배전계통의 고장조건에 따른 산화아연 피뢰기 소자의 누설전류 특성)

  • Lee, B.H.;Choi, H.S.;Kang, S.M.;Park, K.Y.;Lee, S.B.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.174-177
    • /
    • 2003
  • Kinds of most frequent faults happened on overhead distribution system are the single line-to-ground fault, the line-to-line fault and the two line-to-ground fault. Occasionally, the three line-to-ground fault and the disconnection of a wire are happened in severe conditions. In this study, the single line-to-ground fault, the line-to-line fault, two line-to-ground fault on three-phase four-wire overhead distribution system were experimentally simulated and characteristics of total leakage current of distribution arrester caused by these faults were investigated. Also, the changing aspect of total leakage current of distribution arrester caused by voltage variation was investigated. In a consequence, abnormal voltages caused by voltage variation, the line-to-line fault, the two line-to-ground fault have a little effect on total leakage current of ZnO arrester. But abnormal voltages caused by the single line-to-ground fault have an important effect on total leakage current of ZnO arrester.

  • PDF

An Evaluation of Induced Voltage according to the Grounding Resistance of a 22.9 kV-Y Distribution Line Simulated for its Field Application for Lightning Prevention (낙뢰 예방 배전선로의 현장 적용을 위해 모의된 22.9 kV-Y의 접지저항에 따른 유도전압의 평가)

  • Kim, Jeom-Sik;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.14-19
    • /
    • 2015
  • This study performed simulation tests to prevent induced lightning that occurs to a 22.9 kV-Y distribution line. A simulated distribution line reduced to 1/50 of an actual distribution line was installed to measure the induced voltage according to the change in grounding resistance. It was found that the induced voltage increased as the grounding resistance increased but that the range of its increase was small. This study examined the reliability of the proposed lightning preventive distribution line using the Minitab program (Minitab 17). When a grounding resistance of $300{\Omega}$ was maintained for each electric pole, the Anderson Darling (AD) was 0.410, the smallest, and the P value was analyzed to be 0.323, verifying that the reliability and stability were excellent. Therefore, these results will be utilized as a basis for the substantiation of a lightning preventive distribution line before its installation.

An Auto-drawing Algorithm for the Single Line Diagram of Distribution Systems (배전선로 회선별단선도 자동생성 알고리즘)

  • Son, Ju-Hwan;Lim, Seong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.854-859
    • /
    • 2010
  • Distribution Automation System(DAS) is designed to improve operational efficiency by acquisition and control of remote data using its components such as central computation units, communication network and feeder remote terminal units. A conventional human machine interface of the DAS adopts a schematic diagram which is made by drawing power equipments on the geographic information system map. The single line diagram is more useful than the schematic diagram for the main tasks of distribution system operation such as protective relay coordination, service restoration and loss minimization. Since the configuration of the distribution line is changed according to the relocation of the open tie switches, the auto-drawing algorithm based on the connection between the sections and the switches is an essential technique. This paper proposes a new auto-drawing algorithm for a single line diagram of distribution systems based on tertiary tree and collision avoidance method. The feasibility of the proposed algorithm has been testified for various cases using practical distribution system with 12 feeders.

Empirical Study on the Dip Design and Installation of Distribution Line Conductors (배전선로의 이도설계 및 시공에 대한 실증연구)

  • Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.307-313
    • /
    • 2021
  • In this study, the comparative analysis, among the design standard value of distribution power, the calculated value from the measurement data of strand and the empirical data of the distribution line itself, have been performed for the elastic coefficients and linear expansion coefficients of distribution line conductors. The empirical values of elastic coefficients were lower about 10.6%(892kgf/mm2) than those of the design standard value of the distribution power and there were a little difference between the empirical values of linear expansion coefficients and the design standard value of the distribution power. From the above results, it could be concluded that the empirical values of conductor characteristics should be used in the dip design and installation of distribution line.

A Boundary Protection for Power Distribution Line Based on Equivalent Boundary Effect

  • Zhang, Xin;Mu, Long-Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.262-270
    • /
    • 2013
  • A boundary protection method for power distribution line based on equivalent boundary effect is presented in this paper. In the proposed scheme, the equivalent resonance component with a certain central frequency is sleeve-mounted at the beginning of protected zone. The 'Line Boundary' is built by using boundary effect, which is created by introducing impedance in the primary-side of line. The 'Line Boundary' is significantly different from line wave impedance. Therefore, the boundary protection principle can be applied to power distribution line without line traps. To analyze the frequency characteristic corresponding to traveling-waves of introducing impedance in the primary-side of line, distributed parameters model of equivalent resonance component is established. The results of PSCAD/EMTDC simulation prove the obvious difference of voltage high frequency component between internal faults and external faults due to equivalent resonance component, and validate the scheme.