• 제목/요약/키워드: Door assembly

검색결과 41건 처리시간 0.022초

도어 장착을 위한 산업용 로보트의 위치 보정 시스템 개발 (Development of a Position Correction System of Industrial Robot for Door Chassis Assembly Task)

  • 변성동;김미경;강희준;김상명
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 1995
  • In this paper, we developed a position correction system of industrial robot for door-chassis assembly task. With the aid of a dedicated vision system, industrial robot accomplished visually acceptable door-chassis's assembly task. The alogorithm of the position detection of notch and 2 dimesional position correction algorithm are noteworthy. The obtained algorithms were satisfatorily implemented for a real door-chassis model.

  • PDF

합체박판 성형기법의 적용을 위한 자동차 도어의 구조 설계 (Structural Design of Door Assembly to Apply Tailor Welded Blanks Technique)

  • 황우석;이덕영;하명수
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.228-233
    • /
    • 2002
  • TWB(Tailor Welded Blanks) is one of the recent techniques to reduce the weight and cost of the body members. To apply the TWB technique, we must decide the position of the welding line and the thickness of the welded blanks. Although many researchers have tried to check the formability of welded blanks, there are not so many researches from the structural point of view. In this paper, the TWB technique is applied to combine the door inner panel and the hinge face panel into one piece. The finite element structural analysis of the door assembly leads to the final design of the tailor welded door inner panel, which shows the mass reduction of 1.08kg without the sacrifice of the structural stiffness. The structural stiffness analysis includes the frame stiffness analysis, the belt line stiffness analysis, the door sagging analysis and the vibration analysis.

도어트림을 이용한 Digital 조립시스템 개발 (Development of Digital Assembly system with Door Trim)

  • 박홍석;여성운;이규봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.625-626
    • /
    • 2006
  • Nowadays, the increasing global competition forces manufacturing enterprises to apply new technologies method of their products. To save time and cost in assembly process and to increase the quality of products, it is very important to choose an optimal assembly system. We propose a methodology that generates an optimal assembly system by using the Digital manufacturing.

  • PDF

강철재도어에서 현장가공조립이 용이한 도어락상자틀 보강방법에 대한 연구 (A Study on the Reinforcement Method of the Door Lock Box Frame for Easy Field Processing Assembly in Steel Door)

  • 임보혁;이주원;조성권;이해열
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.133-134
    • /
    • 2023
  • In general, all buildings are equipped with various types of handles for opening and closing the door, and unlike wooden doors, steel doors such as fire doors are equipped with a box-shaped door lock box frame surrounding the outside of the door lock to protect the door lock, which is called a cylinder protection cover. These cylinder protection covers have various types and types of fastening structures, and the cylinder protection covers on the market are molded in factories and standardized according to the size and shape of the door lock, requiring various types of cylinder protection covers. Accordingly, a variable cylinder protection cover with a simple prefabricated structure that can fundamentally solve these problems can be used as one cylinder protection cover regardless of the type, shape, and size of the door lock.

  • PDF

차량도어 조립공차 예측기술 개발 (An Advanced Prediction Technology of Assembly Tolerance for Vehicle Door)

  • 정남용;조진형;오현승;이세재
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.91-100
    • /
    • 2018
  • The setting of values on door hinge mounting compensation for door assembly tolerance is a constant quality issue in vehicle production. Generally, heuristic methods are used in satisfying appropriate door gap and level difference, flushness to improve quality. However, these methods are influenced by the engineer's skills and working environment and result an increasement of development costs. In order to solve these problems, the system which suggests hinge mounting compensation value using CAE (Computer Aided Engineering) analysis is proposed in this study. A structural analysis model was constructed to predict the door gap and level difference, flushness through CAE based on CAD (Computer Aided Design) data. The deformations of 6-degrees of freedom which can occur in real vehicle doors was considered using a stiffness model which utilize an analysis model. The analysis model was verified using 3D scanning of real vehicle door hinge deformation. Then, system model which applying the structural analysis model suggested the final adjustment amount of the hinge mounting to obtain the target door gap and the level difference by inputting the measured value. The proposed system was validated using the simulation and showed a reliability in vehicle hinge mounting compensation process. This study suggests the possibility of using the CAE analysis for setting values of hinge mounting compensation in actual vehicle production.

특정점 측정에 근거한 도어 장착 로봇의 위치 보정 시스템 개발: Part II - 측정및 구현 (Development of position correction system of door mounting robot based on point measure: Part ll-Measurement and implementation)

  • 변성동;강희준;김상명
    • 한국정밀공학회지
    • /
    • 제13권3호
    • /
    • pp.42-48
    • /
    • 1996
  • In this paper, a position correction system of industrial robot for door-chassis assembly tast is developed in connection with the position correction algorithm shown in Part I. Tow notches and a hole of auto chassis are selected as the reference measure points and a vision based error detection algorithm is devised to measure in accuracy of less than 0.07mm. And also, the transformation between base and tool coordinates of the robot is shown to send the suitable correction quantities caaording to robot's option. The obtained algorithms were satisfactorily implemented for a real door-chassis model such that the system could accomplish visually acceptable door-chassis assembly task.

  • PDF

Development of a Modular Structure-based Changeable Manufacturing System with High Adaptability

  • Park, Hong-Seok;Choi, Hung-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.7-12
    • /
    • 2008
  • Today, manufacturers are forced to acknowledge that the life cycles of products are becoming shorter. In the case of the door trim assembly field, the highly frequent introduction of new products and the continuous increase in product varieties leads to the demand for redesigning assembly systems more often. Modular manufacturing systems can be an important issue in helping to overcome these problems. This paper presents the development of a modular assembly system for the door trim, and because it takes the change drives into consideration, this system is highly flexible in adapting to changes in the environment.

LFT소재 특성을 고려한 Door Carrier Plate 변형 해석 (Warpage analysis of a Door Carrier Plate in the injection molding Considering the characteristics of LFT)

  • 유호영;박시환
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3625-3630
    • /
    • 2013
  • 도어 모듈은 모듈화의 대표적인 예로 여러 부품들은 모듈형태로 완성하여 완성차 업체의 원가절감 및 조립시간 단축, 품질 향상 등에 큰 기여를 이루었다. 주요 부품중의 하나인 Door carrier plate는 주로 steel을 이용한 press 성형이 주였으나 최근에는 PP-LFT(유리 장섬유 강화PP)를 사용한 사출 공법을 적용함으로써 형상자유도를 높혀 모듈에 부착되는 많은 종류의 부품들을 통합할 수 있게 되었으며 중량 절감을 이룰 수 있게 되었다. 하지만 사출 성형시 제품의 형상 및 gate위치 설정의 한계성과, LFT의 특성에 의하여 변형이 비교적 심해 일반적으로 시사출 진행 후 보상 가공을 진행하여 조립성을 개선한다. 이러한 사후 수정 공정은 금형의 품질 저하 및 생산원가 상승의 주요인이다. 부분적으로 사출 CAE를 적용하여 warpage정도를 예측하나 그 신뢰성 확보에 어려움을 겪고 있다. 따라서 LFT를 사용하는 Door carrier plate에 대한 해석 신뢰성을 확보할 수 있는 기법으로 hyper-mesh에서 1차 mesh작업 후 moldlfow 자체 tool을 이용하여 mesh의 두께 구현성을 높혔으며, fiber orientation해석을 위하여 ARD-RSC model을 적용하였다.

디지털 제조기술 지원 도어트림 조립시스템 개발 (Development of Door Trim Assembly System base on Digital Manufacturing Technology)

  • 박홍석;문시환;박상길;최홍원;신상종;차석근
    • 한국CDE학회논문집
    • /
    • 제14권4호
    • /
    • pp.242-253
    • /
    • 2009
  • Nowadays, manufacturing industry has been making its effort not only for productivity elevation but also for cost reduction in order to survive in the global market which is more and more challenging. In this paper, the method for planning of digital manufacturing system is proposed and door trim assembly system is determined as the subject of our research. First of all, the process sequence is generated based on the product analysis. And, the static and dynamic relationships between system components are represented using IDEF0 and UML model. The working time is estimated through the regression analysis based on MODAPTS method. According to the system configuration strategy, initial concept system layout is implemented 3D virtual environment. The problems caused by bad working motions are detected and modified through the ergonomic analysis using RULA method. According to proposed procedure, digital door trim assembly system is implemented in DLEMIA.