• Title/Summary/Keyword: Doppler processing

Search Result 218, Processing Time 0.023 seconds

Range Walk Compensated Squint Cross-Range Doppler Processing in Bistatic Radar (바이스태틱 레이더에서 Range Walk이 보상된 Squint Cross-Range 도플러 프로세싱)

  • Youn, Jae-Hyuk;Kim, Kwan-Soo;Yang, Hoon-Gee;Chung, Yong-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1141-1144
    • /
    • 2011
  • Range walk has been a major problem in achieving correct Doppler processing. This frequently occurs when range variation is severe just like in a bistatic radar or in high speed target scenario. This paper presents a range walk compensated range-Doppler processing algorithm applicable to the bistatic radar. In order for the compensation, a range-domain interpolation is applied for range compressed signal so that Doppler processing is performed along the evenly time-spaced range bins that contain target returns. Under a bistatic radar scenario, the proposed algorithm including a range domain pulse compression is mathematically described. Finally, the validity of the algorithm is demonstrated by simulation results showing the superiority of a SCDP(Squint Cross-range Doppler Processing) over an uncompensated Doppler processing.

A Programmable Doppler Processor Using a Multiple-DSP Board (다중 DSP 보드를 이용한 프로그램 가능한 도플러 처리기)

  • 신현익;김환우
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.333-340
    • /
    • 2003
  • Doppler processing is the heart of pulsed Doppler radar. It gives a clutter elimination and coherent integration. With the improvement of digital signal processors (DPSs), the implementation using them is more widely used in radar systems. Generally, so as for Doppler processor to process the input data in real time, a parallel processing concept using multiple DSPs should be used. This paper implements a programmable Doppler processor, which consists of MTI filter, DFB and square-law detector, using 8 ADSP21060s. Formulating the distribution time of the input data, the transfer time of the output data and the time required to compute each algorithm, it estimates total processing time and the number of required DSP. Finally, using the TSG that provides radar control pulses and simulated target signals, performances of the implemented Doppler processor are evaluated.

Doppler Frequency Compensated Detection and Ranging Algorithm for High-speed Targets (도플러 주파수가 보상된 고속 표적 탐지 및 레인징 알고리즘)

  • Youn, Jae-Hyuk;Kim, Kwan-Soo;Yang, Hoon-Gee;Chung, Young-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1244-1250
    • /
    • 2010
  • This paper presents a detection and ranging algorithm for a high-speed targets in the high PRF radar. We show, unlike the conventional methods, it firstly estimates Doppler frequency with a quasi-periodic pulse train prior to range processing. The estimated Doppler frequency can compensate the phase error enbeded in the received signal, which makes the signal integrated coherently in the range direction and localizes the target's signiture in low SNR. We present the derivation of the proposed algorithm and discuss how the system parameters such as the range/Doppler sampling condition, processing time and Doppler estimation error affect the performance of the proposed algorithm, which is verified by simulations.

Removal of Clutter from Doppler Radar Signal to Measure Accurate Muzzle Velocity (도플러 레이더를 이용한 포구속도 계측 시 클러터 제거 방법)

  • Kim, Hyoung-rae
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.142-150
    • /
    • 2019
  • Muzzle Velocity is one of the most important measurement items for evaluation of ammunition. The muzzle velocity is defined as the velocity when the projectile leaves the muzzle. Particularly, since the muzzle velocity is closely related to the performance of the propellant, precise measurement of muzzle velocity is required. Doppler radar is used to measure the muzzle velocity, but the quality of Doppler radar signal depends on the test site environment. In this paper, a method to remove the clutter that degrades the signal quality of Doppler radar by improving the structure of the test site and the signal processing method is suggested. For the application of the improved signal processing method, a program for acquiring Doppler radar's raw Doppler data was created. Statistical verification of the velocity data obtained through the improvement of the test site structure and signal processing method proved that the proposed method is effective for the removal of clutter as compared with the existing method.

Improvement of Processing Speed of the Doppler Filter in a Low Power Radar (저 출력 레이더의 도플러필터의 처리속도 개선)

  • Park, Jeong-Ho;Jeong, Hong
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.167-170
    • /
    • 2001
  • A low power pulse Doppler radar should integrate a large number of data to provide a required maximum detectable distance. Doppler filter needs a window that has good out-of-bard rejection level to maintain high dynamic range. From these facts, we can apply decimation and presumming to increase the speed of Doppler processing. This Paper investigates the efficiencies of several decimation methods and the loss of presumming. And I propose a method to increase processing speed but to maintain the maximum detectable distance.

  • PDF

Study on Multi-Mode Monopulse Signal Processing System Providing Optimal Time Delay under High Doppler Condition (고속 도플러 편이 환경에서 최적 시간지연을 갖는 다중모드 모노펄스 신호처리에 관한 연구)

  • Lee, Jaemoon;Lim, Jaesung;Ahn, Huisoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.582-589
    • /
    • 2016
  • Multi-mode monopulse system is widely used for satellite terminal like UAV because of high tracking accuracy and low size/weight profile. In order to calculate tracking error, Multi-mode monopulse system utilizes high-order mode signal, and it should have enough C/N(carrier to noise) level therefore tracking system needs narrow band filtering of received satellite beacon signal as much as possible. However, UAV suffers for beacon frequency drift derived from Doppler effect due to satellite figure 8 movement and UAV maneuvering. Therefore wideband signal processing needs to be considered in advance for exact doppler compensation and consequent time delay. In this paper, we propose the multi-stage Digital Signal processing system for beacon signal, which could minimize the signal delay under high Doppler and low C/N condition.

Airborne Pulsed Doppler Radar Development (비행체 탑재 펄스 도플러 레이다 시험모델 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Bae, Jae-Hoon;Jeon, In-Pyung;Yang, Ju-Yoel
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system of the aircraft to perform various missions in all weather environments. This paper presents the design, development, and test results of the multi-mode pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRU units, which include ANTU(Antenna Unit), TRU(Tx Rx Unit), RSDU(Radar Signal & Data Processing Unit) and DISU(Display Unit). The developed technologies include the TACCAR processor, planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, DSP based Doppler FFT filtering, adaptive CFAR, IMU, and tracking capability. The design performance of the developed radar system is verified through various helicopter-borne field tests including MTD (Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

  • PDF

Development of Portable Arrhythmia Moniter Using Microcomputer(I) (마이크로 컴퓨터를 이용한 휴대용 부정맥 모니터의 개발(I)-하드웨어 설계를 중심으로-)

  • 이명호;안재봉
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.169-182
    • /
    • 1986
  • Pulsed ultrasonic Doppler system is a useful diagnostic instrument to measure blood-flow-velocity, velocity profile, and volume-blood-flow. This system is more powerful compare with 2-dimensional B-scan tissue image. A system has been deve- loped and ii being evaluated using TMS 32010 DSP. We use this DSP for the purpose of real-time spectrum analyzer to obtain spectrogram in singlegate pulsed Doppler system and for the serial comb filter to cancel clutter and zero crossing counter to estimate Doppler mean frequency in multigate pulsed Doppler system. The Doppler shift of the backscattered signals is sensed in a phase detector. This Doppler signal corresponds to the mean velocity over a some region in space defined by the ultrasonic beam dimensions, transmitted pulse duration, and transducer ban(iwidth. Multi- gate pulsed Doppler system enable the transcutaneous and simultaneous assessment of the velocities in a number of adjacent sample volumes as a continuous function of time. A multigate pulsed Doppler system processing the information originating from presented.

  • PDF

Optimal Radar Pulse Compression Processing Algorithm and the Resulting Optimal Codes for Pulse Compressed Signals (레이더 펄스 압축 신호의 최적 탐색 알고리즘 개발 및 최적 코드에 관한 연구)

  • 김효준;이명수;김영기;송문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1100-1105
    • /
    • 2000
  • The most widely used radar pulse compression technique is correlation processing using Barker code. This technique enhances detection sensitivity but, unfortunately, suffers from the addition of range sidelobes which sometimes will degrade the performance of radar systems. In this paper, our proposed optimal algorithm eliminates the sidelobes at the cost of additional processing and is evaluated in the presence of Doppler shift. We then propose optimal codes with regard to the proposed algorithm and the performance is compared against the traditional correlation processing with Barker codes. The proposed processing using optimal codes will be shown to be superior over the traditional processing in the presence of Doppler shift.

  • PDF

Design and implementation of a X-band Doppler radar sensor using the homodyne detection (호모다인 검파방식을 이용한 X-밴드 도플러 레이더 센서의 설계 및 제작)

  • 장남영;최평석;은재정
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 2001
  • In this paper, a transmitter and a receiver using a Gunn diode and SBD was designed and fabricated in X-band. This system detects Doppler shift signal reflected by moving target through the homodyne detection, which is Doppler radar sensor for the measurement of the velocity of moving target. By the experimental results, the oscillating condition of the transmitter was satisfied at about the half wavelength between the supporting post of the Gunn diode in the waveguide and the waveguide short. And using the fabricated Doppler radar sensor, the velocity measurement deviation of moving target was 1.24%.

  • PDF