• Title/Summary/Keyword: Dose Attenuation

Search Result 163, Processing Time 0.037 seconds

The Study on the Head and Neck Phantom for Quality Assurance of Intensity Modulated Radiotherapy (세기변조방사선치료의 정도관리를 위한 두경부 팬톰 제작에 관한 연구)

  • Shin Dongho;Park Sung-Yong;Kim Joo Young;Lee Se Byeong;Cho Jung Keun;Kim Dae Yong;Cho Kwan Ho
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • For the QA of IMRT treatment of head and neck cancer by using M3 (BrainLAB Inc. Germany), it is not easy to measure delivery dose exactly because the dose attenuation appears by the couch according to the position of table and gantry. In order to solve this problem, we fabricated head and neck phantom which would be implemented on the couch mount of Brain Lab Inc. We investigated dose attenuation by the couch and found the difference of dose distribution by the couch, in the applying this phantom to the clinic. After measurement, we found that point dose attenuation was 35% at maximum and dose difference was 5.4% for a point dose measurement of actual patient quality assurance plan.

  • PDF

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

Correction of Dose Distribution at Total Body Irradiation using Compensator

  • Kim Jong Sik;Cho Hyun Sang;Kim Young Kon;Cho Jung Keun;Ju Sang Kyu;Park Young Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.87-93
    • /
    • 1997
  • The using of compensator is required to adjust the irregular dose distribution due to irregular thickness of the body in Total Body Irradiation. Aluminuim, copper or lead is generally used as compensator. In our study, we would like to introduce a result of the attenuation and compensation effect of radiation use compensator made by duralumin and its clinical use. The thickness of compensator was calculated by the attenustion of radiation, which was measured by polystyrene phantom and ionization chamber(farmer). The compensation effect of radiation was measured by diode detector. All of conditions were set as in real treatment, and the distanc from source to detector was 446 cm. We also made fixation of device to easily attach the compensator to LINAC. Beam spoiler was menufactured and placed on the patient to irradiate sufficient dose to the skin. diode detector were placed on head, neck, chest, umbilicus. pelvis and knee with each their entranced exit points, and datas of dose distribution were evaluated and compared in each points for eleven patients(Feb. 96-Feb. 97). The attenuation rate of irradiation by duralumin compensator was measured as $1.4\%$ in 2mm thickness. The mean attenuation rate was $1.3\%$ per 2mm as increasing the thickness gradually to 50 mm. By using duralunim compensator, dose distribution in each points of body was measured with ${\pm}2.8\%$ by diode detectior. We could easily calculate the thickness of compensator by measuring the attenuation rate of radiation, remarkably reduce the irragularity of dose distribution duo to the thickness of body and magnify the effect of radiation therapy.

  • PDF

Characteristics of Tissue Dose of High Dose Rate Ir-192 Source Substitution for Co-60 Brachytherapy Source (코발트-60 선원 대체용 고선량률 Ir-192 선원의 조직선량특성)

  • 최태진;이호준;김옥배
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.259-266
    • /
    • 1998
  • To achieve the 2D dose distribution around the designed high dose rate Ir-192 source substitution for Co-60 brachytherapy source, we determined the exposure rate constant and tissue attenuation factors as a large depth as a 20 cm from source center. The exposure rate constant is used for apparent activity in designed source with self-absorption and encapsulation steel wall. The tissue dose delivered from the 4401 segments of 2.5 mm in a diameter and 2.5 mm height of disk-type source layer. In the experiments, the tissue attenuation factors include the tissue attenuation and multiple scattering in a medium surrounding the source. The fitted the polynomial regression with 4th order for the tissue attenuation factors are very closed to the experimental measurement data within ${\pm}$1% discrepancy. The Meisberger's constant showed the large uncertainty in large distance from source. The exposure rate constant 4.69 Rcm$^2$/mCi-hr was currently used for determination of apparent activity of source and air kerma strength was obtained 0.973 for tissue absorbed dose from the energy spectrum of Ir-192 source. In our experiments with designed high dose rate brachytherapy source, the apparent activity of Ir-192 source was delivered from the 54.6 % of actual physical source activity through the self-absorption and encapsulation wall attenuations. This paper provides the 2-dimensional dose tabulation from unit apparent activity in a water medium for dose planning includes the multiple scattering, source anisotropy effect and geometric factors.

  • PDF

The Dose Attenuation according to the Gantry Angle and the Photon Energy Using the Standard Exact Couch and the 6D Robotic Couch (Standard Exact Couch와 6D Robotic Couch를 이용한 광자선의 조사각에 따른 선량 감쇠에 대한 연구)

  • Kim, Tae Hyeong;Oh, Se An;Yea, Ji Woon;Park, Jae Won;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • The objective of this study is to increase the accuracy of dose transmission in radiation therapy using two types of treatment tables, standard exact couch (Varian 21EX, Varian Medical Systems, Milpitas, CA) and 6D robotic couch (Novalis, BrainLAB A.G., Heimstetten, Germany)). We examined the dose attenuation based on the two types of treatment tables and studied the dose of attenuation using the phase (In/Out) for the standard exact couch. We measured the relative dose according to the incident angle of a penetrative photon beam under a treatment table. The incident angle of the photon beam was from $0^{\circ}$ to $360^{\circ}$ in the increments of $5^{\circ}$. The reference angle was set to $0^{\circ}$. Furthermore, the relative dose of the 6D robotic couch was measured using 6 MV and 15 MV, and that of the standard exact couch was measured at the sliding rail position (In-Out) using 6 MV and 10 MV. In the case of the standard exact couch, the measured relative dose was 16.53% (rails at the "In position," $175^{\circ}$, 6 MV), 12.42% (rails at the "In position," $175^{\circ}$, 10 MV), 13.13% (rails at the "Out position," $175^{\circ}$, 6 MV), and 9.96% (rails at the "Out position," $175^{\circ}$, 10 MV). In the case of the 6D robotic couch, the measured relative dose was 6.82% ($130^{\circ}$, 6 MV) and 4.92% ($130^{\circ}$, 15 MV). The photon energies were surveyed at the same incident angle. The dose attenuation for an energy of 10 MV was 4~5% lower than that for 6 MV. This indicated that the higher photon energy, lesser is the attenuation. The results of this study indicated that the attenuation rate for the 6D robotic couch was confirmed to be 1% larger than that for the standard exact couch at 6 MV and $180^{\circ}$. In the case of the standard exact couch, the dose attenuation was found to change rapidly in accordance with the phase ("In position" and "Out position") of the sliding rail.

Dose Attenuation in the Mid-Cranial Fossa with 6 MV Photon Beam Irradiations (6 MV X-선 조사시 중두개와에서의 선량감쇠)

  • Park, Jeong-Ho;Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.125-131
    • /
    • 1990
  • In X-ray irradiation, dose distribution depends on multiple parameters, one of them being tissue inhomogeneity to change the dose significantly. considerable dose attenuation through the mid-cranial fossa is expected because of various bony structures in it. Dose distribution around the mid-cranial fossa, following irradiation with 6 MV photon beam, was measured with LiF TLD micro-rod, and compared with the expected dose inthe same sites. In our calculation with $C_f$(correction factor), the expected dose attenuation revealed about $3.74\%$ per 1 cm thickness of bone tissue. And the differences between the expected dose with correction for bone tissue and the measured dose by TLD was small, agreeing within an average variation of $\pm0.21\%$.

  • PDF

A Study on Overexposure Rate according to Overdensity in Chest X-ray Radiography(II) (흉부촬영에서 overdensity에 따른 overexposure rate를 아는 방법(II))

  • Kim, Jung-Min;Huo, Joon;Hayashi, Taro
    • Journal of radiological science and technology
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2000
  • We have presented with the "A study on overexposure rate according to over-density in chest X-ray radiography(I)" last year. In this report, We could calculate the entrance skin dose from chest X-ray film density the formula $I_0=Ix/e^{-{\mu}x}{\times}mG$, (mG is Bucky factor) was used to deliver the skin dose. At that time, There was two problems that the Bucky factor from maker was not equal to field experience and the field size influenced on the Attenuation Rate. The experiment of Bucky factor was done from film method and retried the Attenuation Rate of Acryle phantom according to Good & Poor geometry. As the results, The Bucky factor from maker higher than in this experiments $30{\sim}40%$. The Attenuation Rate in good geometric condition brings about a little alteration compare with poor geometric condition. In the field experiment, we could get the chest image with very low entrance skin radiation dose $29.3{\mu}Sv$, especially with air gap methode, the entrance skin dose was detected $10{\mu}Sv$.

  • PDF

A study on dose attenuation in bone density when TBI using diode detector and TLD (전신방사선조사(TBI)시 다이오드 측정기(Diode detector) 및 열형광선량계(TLD)를 이용한 골조직 선량감쇄에 대한 고찰)

  • IM Hyun Sil;Lee Jung Jin;Jang Ahn Ki;Kim Wan Seon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.67-77
    • /
    • 2003
  • I. Purpose Uniform dose distribution of the whole body is essential factor for the total body irradiation(TBI). In order to achieved this goal, we used to compensation filter to compensate body contour irregularity and thickness differences. But we can not compensate components of body, namely lung or bone. The purpose of this study is evaluation of dose attenuation in bone tissue when TBI using diode detectors and TLD system. II. Materials and Methods The object of this study were 5 patients who undergo TBI at our hospital. Dosimetry system were diode detectors and TLD system. Treatment method was bilateral and delivered 10MV X-ray from linear accelerator. Measurement points were head, neck, pelvis, knees and ankles. TLD used two patients and diode detectors used three patients. III. Results Results are as followed. All measured dose value were normalized skin dose. TLD dosimetry : Measured skin dose of head, neck, pelvis, knees and ankles were $92.78{\pm}3.3,\;104.34{\pm}2.3,\;98.03{\pm}1.4,\;99.9{\pm}2.53,\;98.17{\pm}0.56$ respectably. Measured mid-depth dose of pelvis, knees and ankles were $86{\pm}1.82,\;93.24{\pm}2.53,\;91.50{\pm}2.84$ respectably. There were $6.67\%{\sim}11.65\%$ dose attenuation at mid-depth in pelvis, knees and ankles. Diode detector : Measured skin dose of head, neck, pelvis, knees and ankles were $95.23{\pm}1.18,\;98.33{\pm}0.6,\;93.5{\pm}1.5,\;87.3{\pm}1.5,\;86.90{\pm}1.16$ respectably. There were $4.53\%{\sim}12.6\%$ dose attenuation at mid-depth in pelvis, knees and ankles. IV. Conclusion We concluded that dose measurement with TLD or diode detector was inevitable when TBI treatment. Considered dose attenuation in bone tissue, We must have adequately deduction of compensator thickness that body portion involved bone tissue.

  • PDF

Evaluation of Dosimetry and Image of Very Low Dose CT Attenuation Correction for Pediatric PET/CT: Phantom Study (팬텀을 이용한 소아 PET/CT 검사 시 감쇄보정 CT 선량과 영상 평가)

  • Bahn, Young-Kag;Kim, Jung-Yul;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • Purpose: To evaluate the dosimetry and image of very low does CT attenuation correction for phantom using pediatric PET/CT. Materials and methods: three PET / CT scanners (Discovery STe, BiographTruepoint 40, Discovery 600) as a child-size acrylic phantom and ion chamber dosimeter (Unfous Xi CT, Sweden) using a CT image acquisition parameters (10, 20, 40, 80, 100, 160 mA; 80, 100, 120, 140 kVp) by varying the depth dose and evaluate $CTDI_{vol}$ value. And each attenuation corrected PET/CT images used NEMA PET Phantom$^{TM}$ (NU2-1994) was evaluated by SUV. Results: Abdominal diagnosis CT dose in general pediatric (about 10 ages) parameter (100 kVp, 100 mA) than very low dose CT parameter (80 kVp, 10 mA) at the depth dose was reduced approximately 92%, $CTDI_{vol}$ was reduced to about 88%. Each CT attenuation corrected parameters PET images showed no change in the value of SUV. Conclusion: for pediatric patients, PET/CT scan can be obtained with very low dose attenuation correction CT (80 kVp, 10 mA), and such attenuation correction CT dose was reduced 100 fold than diagnosis CT dose. PET / CT scan used very low dose CT attenuation correction in pediatric patients can be helpful in reducing radiation dose.

  • PDF

Performing angiographic intervention with a femoral entry shield: Element analysis microscopy and hand dose reduction for interventional radiologist

  • Law, Martin;Ng, Dickon H.L.;Yoon, Do-Kun;Djeng, Shih-Kien
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1318-1322
    • /
    • 2021
  • To unveil and delineate the elements applicable to the radiation protection of a femoral entry shield, calculate its mass attenuation coefficient, and demonstrate its dose reduction efficacy for interventional radiologist performing transarterial embolization (TAE) of ruptured hepatocellular carcinoma (rHCC). The lead equivalency of the shield was firstly validated. Electron microscopy was used to confirm the femoral entry shield being lead-free and to analyze the elemental content, with which the mass attenuation coefficient of the shield was calculated. An adult phantom, irradiated at the upper abdomen to simulate the TAE of rHCC, was used together with a dosimeter attached to the palm of a hand phantom. The dose rates at the hand phantom were measured, with the rHCC clinical protocol, without and with the femoral entry shield placed over the right femoral access site of the adult phantom. Without using the shield, the average hand dose rate was measured to be 0.325 µSv/sec. While using the shield, it was determined to be 0.110 µSv/sec. There was significant 66% dose reduction to the hand dose of IRs performing angiographic intervention with the femoral entry shield.