• Title/Summary/Keyword: Double-strand breaks

Search Result 54, Processing Time 0.029 seconds

Evaluation of DNA Double Strand Breaks in Human and Mouse Lymphocyte Following ${\gamma}-Irradiation$ (${\gamma}-Ray$ 조사에 따른 사람의 정상임파구와 마우스 정상임파구의 DNA Double Strand Break 발생율에 대한 비교분석)

  • Kim Tae Hwan;Kim Sung Ho;Chung In Yong;Cho Chul Koo;Ko Kyung Hwan;Yoo Seong Yul
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.219-225
    • /
    • 1993
  • The evaluation of radiation-induced DNA double strand breaks (DSB) was made following irradiation of human lymphocytes, murine lymphocytes and EL-4 leukemia cells over a wide dose range of $^{60}Co\;{gamma}-rays.$ In lipopolysaccharide (LPS) or phytohemagglutinin (PHA)-stimulated murine lymphocytes, the slopes of the stand scission factor (SSF) revealed that lymphocytes with LPS increased DNA DSB formation by a factor of 1.432 (p<0.005). Furthermore, strand break production was relatively inefficient in the T lymphocytes compared to the B lymuhocytes. And EL-4 leukemia cells were found to form significantly more DNA DSB to a greater extent than normal lymphocytes (p<0.005). The in vitro studies of the intrinsic radiosensitivity between human lymphocytes and murine lymphocytes showed similar phasic kinetics. However, murine lymphocytes were lower in DNA DSB formation and higher in the relative radiation dose of 10 percent DNA strand breaks at 3.5 hours following ${gamma}-irradiation$ than human lymphocytes. Though it is difficult to interpret these results, these differences may be result from environmental and genetic factors. From our data, if complementary explanations for this difference will be proposed, the differences in the dose-effect relationship for the induction of DSB between humans and mice must be related to interspecies variations in the physiological condition of the peripheral blood in vitro and not to differences in the intrinsic radiation sensitivity of the lymphocytes. These results can be estimated on the basis of dose-effect correlation enabling the interpretation of clinical response and the radiobiological parameters of cytometrical assessment.

  • PDF

DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

  • Park, Sojin;Choi, Seoyun;Ahn, Byungchan
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.204-210
    • /
    • 2016
  • DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.

The Effects of Alkaloid Fraction of Korean Ginseng on the Radiation-Induced DNA Strand Breaks (방사선 조사에 의한 DNA Double Strand Breaks의 생성 및 회복에 미치는 인삼 알칼로이드 분획의 효과)

  • Cho Chul Koo;Kim Tae Hwan;Yoo Seong Yul;Koh Kyoung Hwan;Kim Mi Sook;Kim Jeong Hee;Kim Seong Ho;Yoon Hyung Keun;Ji Young Hoon
    • Radiation Oncology Journal
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 1995
  • Purpose : To investigate the effect of alkaloid fraction from Korean ginseng on radiation-induced DNA double strand breaks (dsb) formation and repair in murine lymphocytes Materials and Methods : We used the neutral filter elution technique to assay $^{60}Co\;{\gamma}$ ray-induced DNA double strand breaks formation and repair in C57BL/6 mouse spleen lymphocytes for evaluating the dose-response relationship in the presence of alkaloid fraction as a radioprotective agent. The lymphocytes were stimulated with Phytohemagglutinin (PHA, 2 u g/ml) to label $^3[H]-thymidine.$ Isotope-labelled lymphocytes in suspension were exposed to 100 Gy at $0^{\cdot}C$ in the alkaloid fraction-treated group and elution procedure was performed at PH 9.6. The extents of formation of radiation-induced DNA double strand breaks and repair were compared respectively via strand scission factor (SSF) and relative strand scission factor (RSSF). Results: Alkaloid fraction reduced the formation of double strand breaks with dose modification factor of 2 15, compared to control group Rejoining of DNA dsb appeared to take place via two components. The first fast component was completed within 20.4 minutes, but the second slow component was not completed until 220.2 minutes after irradiation. About $30\%$ of dsb formed by irradiation was ultimately unrejoined despite the administration of alkaloid fraction. The administration of alkaloid fraction had a great effect on the second slow component of repair; the half-time of fast component repair was not changed, but that of slow component was 621.8 minutes. Conclusion: Neutral filter elution assay Proved to be a very effective method to quantitate the extents of DNA dsb formation and its repair. By using this technique, we were able to evaluate the efficiency of alkaloid fraction from Korean ginseng as a valuable radioprotector. Alkaloid fraction can be used prophylactically to prevent or ameliorate the severe radiation damages in workers and neighbors around the atomic power plants. For more refined study, however, more advanced purification of alkaloid fraction wil be needed in the near future.

  • PDF

Effects of Dietary Folate Content on Folate Concentration and DNA Strand Breaks after Alkaline Treatment in Immune Cells (식이엽산함량이 흰쥐의 면역세포의 엽산농도와 알칼리 처리후의 DNA 이중 나산선 잔존율에 미치는 영향)

  • 장남수
    • Journal of Nutrition and Health
    • /
    • v.32 no.6
    • /
    • pp.654-660
    • /
    • 1999
  • Folate, a precursor of the coenzyme tetrahydrofolate, plays an important role in DNA replication and cell proliferation, and thus could influence rapidly proliferating immune cells such as leukocytes and splenocytes. The effects of dietary folate on folate concentrations of plasma, thymus, spleen and leukocytes were investigated in rats. The animals were raised for 6 weeks on semipurifed experimental diets containing 0mg, 2mg, 4mg, 8mg folate/kg diet. Folate concentrations were determined microbiologically using Lactobacillus casei(ATCC 7469), and DNA strand breaks produced by alkaline treatment were analyzed fluorometrically. When compared to folate adequate diet, the folate deficient diet(0mg folate/kg diet) resulted in lowest folate levels in plasma, thymus, spleen and leukocytes, and the highest DNA strand breaks in spleen cells and leukocytes. Dietary folate levels significantly increased folate concentrations of immune tissues, leukocytes, and the plasma in a dose dependent manner, folate concentrations being highest with a diet providing 8mg folate/kg diet. The percentages of the double strand DNA remaining in the splenocytes and leukocytes after alkaline treatment were significantly increased with higher amounts of dietary folate in a dose dependent manner. Folate intakes of 8mg than 4mg/kg diet was found to be more effective in the prevention of DNA strand breaks. The results of this study suggest that increased folate above the requirement level could improve DNA stabilities in immune cells.

  • PDF

Radiation-induced DNA strand breaks in EL4 cells and mouse spleen lymphocytes (방사선에 의한 EL4 마우스 백혈병세포 및 정상 마우스 비장 임파구 DNA strand breaks의 측정)

  • Kim, Sung-ho;Kim, Tae-hwan;Chung, In-yong;Yoo, Seong-yul;Cho, Chul-koo;Chin, Soo-yil
    • Korean Journal of Veterinary Research
    • /
    • v.31 no.3
    • /
    • pp.329-335
    • /
    • 1991
  • The filter elution technique was used to assay $^{60}Co$ $\gamma$ ray-induced DNA strand breaks(SB) in EL4 mouse leukemia cell and mouse spleen lymphocyte. The lymphocytes were stimulated with lipopolysaccharide (LPS, $20{\mu}g/ml$) to label $[^3H]$ thymidine. EL4 cells and lymphocytes in suspension were exposed at $0^{\circ}C$ to 0Gy, 1Gy, 5Gy, 10Gy or l5Gy for DNA single strand breaks(SSB) assay and 0Gy, 25Gy, 50Gy, 75Gy or 100Gy for DNA double strand breaks(DSB) assay of $^{60}Co$ radiation and elution procedure was performed at pH12.1 and 9.6. The number of DNA strand breaks increased with increasing doses of r rays. The strand scission factor(SSF) was estimated in each experiment (eluted volume 21ml). The slope of SSB EL4 cells was $0.01301{\pm}0.00096Gy^{-1}$ (n=5), the slope of SSB for lymphocytes was $0.01097{\pm}0.00091Gy^{-1}$ (n=5) and the slope of DSB for lymphocytes was $0.001707{\pm}0.0000573Gy^{-1}$ (n=5). Thus EL4 cells were more sensitive to induction of DNA SSB by ionizing radiation than lymphocytes (p<0.005). The ratio of slope of dose-response relationship (SSF versus dose) of lymphocytes DNA SSB as compared with the slope of DNA DSB was 6.4.

  • PDF

Metal Effects of Urban Air Particulates on Cytokine Production and DNA Damage

  • Lee, Kwan-Hee;Hong, Yun-Chul
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.255-265
    • /
    • 2001
  • Epidemiologic studies have demonstrated an association between short-term exposure to particulate air pollutants and increased mortality. However the biological mechanism underlying these associations have not been fully established and also the chemical and physical characteristics of the pollutant particles are not well understood. The metal constituents of air pollutant particles and their bioavailability are considered to Play an important role as possible mediators of Particle-induced airway injury and inflammation. Sprague-Dawley rat alveolar macrophage cells (NR8383) were exposed to airborne and acid-leached particulate matter (PM). Titanium oxide and nickel subsulfide were used as negative and positive controls. Particle-induced reactive oxygen species formation in cells was detected using the fluorescent probe 2',7'-dichlorofluorescin diacetate. Expression of TNF-$\alpha$ and IL-6 were measured by enzyme-linked immunosorbent assay, and PM-induced DNA double-strand breaks were determined with $\lambda$DNA/Hind III marker. Metals associated with air pollutant particles mediated intracellular oxidant production in alveolar macrophages, and the cytotoxicity and proinflammatory cytokine production induced by PM were associated with oxidative stress. The oxidants produced by air pollutant particles also are likely to induce DNA double-strand breaks. Our findings in alveolar macrophage cells exposed to PM and acid-leached PM support the hypothesis that metal components in urban air pollutants and their bioavailabilities might play an Important role in the induction of the adverse health effects.

  • PDF

Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

  • Cho, Hong-Rae;Kong, Yoon-Ju;Hong, Soo-Gil;Kim, Keun Pil
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.550-556
    • /
    • 2016
  • During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the $hop2{\Delta}$ or $sae3{\Delta}$ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

Identification of Meiotic Recombination Intermediates in Saccharomyces cerevisiae (효모 감수분열과정에서의 유전자 재조합 기전 특이적 DNA 중간체의 구조 변화)

  • Sung, Young Jin;Yoon, Sang Wook;Kim, Keun Pil
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • During meiosis, genetic recombinants are formed by homologous recombination accompanying with the programmed double-strand breaks (DSBs) and strand exchanges between homologous chromosomes. The mechanism is generated by recombination intermediates such as single-end invasions (SEIs) and double-Holliday junctions (dHJs), and followed by crossover (CO) or non-crossover (NCO) products. Our study was focused on the analysis of meiotic recombination intermediates (DSBs, SEIs, and dHJs) and final recombination products (CO and NCO). We identified these meiotic recombination intermediates using DNA physical analysis under HIS4LEU2 "hot spot" system in budding yeast, Saccharomyces cerevisiae. For DNA physical analysis, when the hot spot locus is recognized by restriction enzyme from synchronous meiotic cells, the fragmented DNA that are forming recombination intermediates can be detected and quantified through Southern hybridization analysis. Our study suggests that this system can analyze the structural change of recombination intermediates during DSB-SEI transition, double-Holiday junctions and crossover/non-crossover products in meiosis.

PATHWAYS AND GENES OF DNA DOUBLE-STRAND BREAK REPAIR ASSOCIATED WITH HEAD AND NECK CANCER (DNA 이중나선파손의 수복 과정과 이와 연관된 두경부암 발생 유전자)

  • Oh, Jung-Hwan;Lee, Deok-Won;Ryu, Dong-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.

XPS STUDY ON DNA DAMAGE BY LOW-ENERGY ELECTRON IRRADIATION

  • Noh, Hyung-Ah;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.190-194
    • /
    • 2011
  • After the first report that electrons with sub-ionization energy of DNA could cause single strand breaks or double strand breaks to DNA, there have been various studies to investigate the mechanisms of DNA damage by low-energy electrons. In this paper, we examined the possibility of using X-ray photoelectron spectroscopy (XPS) to analyze the dissociation patterns of the molecular bonds by electron irradiation on DNA thin films and tried to establish the method as a general tool for studying the radiation damage of biomolecules by low energ yelectrons. For the experiment, pBR322 plasmid DNA solution was formed into the films on tantalum plates by lyophilization and was irradiated by 5-eV electrons. Un-irradiated and irradiated DNA films were compared and analyzed using the XPS technique.