• Title/Summary/Keyword: Down scale model test

Search Result 72, Processing Time 0.03 seconds

An Dredging Depth Calculation of a Pile Under Lateral Loading Based on Model Test (모형실험을 통한 횡하중을 받는 말뚝의 준설깊이 산정)

  • Yoo, Chan-Ho;Lee, Jung-Jae;Kim, Seung-Wook;Chung, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1094-1103
    • /
    • 2010
  • The safety of pile foundation is getting declined when the pile foundation acting on lateral load is exposed by dredging. So appropriate reinforcement is needed for stability secure. Thus, in this study, the stability variation and reinforcement range caused by dredging is estimated on the basis of down scale test. The scale effect is determined by real scale numerical analysis. the behavior of pile by dredging stages is estimated by load control type. The credibility is verified through the comparison between down scale model test and numerical analysis.

  • PDF

Behaviour Characteristics of Tunnel in the Cavity Ground by using Scale Model Tests (축소모형실험을 이용한 공동지반에서의 터널 거동특성)

  • Chung, Jeeseung;Moon, Innki;Yoo, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.61-69
    • /
    • 2013
  • As construction for road and train tunnel is increasing, various geotechnical conditions can be faced during the construction stage. Especially, if the tunnel is located in limestone area, the cavity is mostly to locate in tunnel planning location. One or some cavities which can be harmful for tunnel safety are predicted. Hence, this study was fulfilled to confirm the influence between tunnel and cavity using laboratory scale down model test and numerical analysis. The scale down model test was carried out to confirm the failure load of the model ground about the interval length of cavity and tunnel and to analyze behaviour characteristics of the model ground on the cavity shape. From the model test result, the failure load decrease in accordance with decreasing of interval length between cavity and tunnel within 0.5D. The numerical analyses were carried out for verification about scale down model test. From the numerical analysis result, tunnel safety decreases in the case of the interval between cavity and tunnel within 0.5D.

Simplified Load Calculation and Structural Test for Scale Down Model of Small Wind Turbine Blade according to IEC 61400-2 (IEC 61400-2에 의거한 소형 풍력발전용 블레이드 축소모델의 단순 하중 계산 및 구조 시험)

  • Jang, Yun-Jung;Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • This study deals with simplified load calculation and structural testing for scale down model of small wind turbine blade. First, the blade was designed and produced scale down to 0.2 ratio of initial blade. And moments were acquired by simplified load calculation equations according to IEC 61400-2 standard. Also, structural test using weight was conducted to obtain the maximum moment. Therefore maximum moments were compared at calculation and test.

Azimuth Accuracy Test of Phase Comparison Direction Finding Method Using F-16 Fighter Scale-down Model (F-16 전투기 축소모델을 사용한 위상비교 방향 탐지 기법의 방위각 정확도 시험)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Kim, Young-Ho;Kim, Kichul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.83-88
    • /
    • 2017
  • This paper describes the azimuth accuracy test of phase comparison direction finding method using F-16 fighter scale-down model. When the antennas are placed on the bottom of a fighter, reflection signals caused by an aircraft structure arises and an azimuth error occurs. In this research, the F-16 fighter scale-down model was made to 5:1, and five antennas were placed on the bottom of the model, then the radio waves of emitters were received by the antennas in the $0-360^{\circ}$ azimuth angles. The accuracy test was performed by numerically analyzing the phases of the radio waves received by the five antennas. The azimuth error of the phase comparison direction finding with scale-down model was measured to be less than $0.5^{\circ}$ when the signal noise ratio was larger then 0dB, and it could be very useful for the design of the phase comparison direction finding method of the fighter.

Bearing Capacity Evaluation of the Drilled Shaft Using Small Scale Model Test (축소모형말뚝을 이용한 현장타설말뚝의 지지력 평가)

  • 조천환;김홍묵;김웅규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.117-126
    • /
    • 2004
  • Recently, the top & down method with drilled shafts as a foundation of high rise building is often adopted for the purpose of construction period reduction and construction cost effectiveness. It is common to omit the loading test as a quality assurance on account of the high capacity of drilled shafts for the top & down method. It seems that the capacity of drilled shaft in recent top & down method is beyond that of conventional loading test method. However, the quality assurance for the drilled shaft as foundation of high rise building becomes much more important since the drilled shaft should bear much higher working load. A small scale test pile can be an alternative as a quality assurance for the drilled shaft with hish capacities. Through a case study, this paper gives an idea for solving the limitation of the conventional loading test method for the quality assurance of drilled shaft with high capacities. In particular, this paper analyzed the scale effect for a small drilled shaft installed into bedrock, which could be used for an alternative.

Analytical Study on Performance Evaluation of Large-Sized Silencer using Geometric Similarity Law (기하상사법을 이용한 대형 소음기의 성능평가에 관한 해석적 연구)

  • Yang, Jun-Hyuk;Lee, Boo-Youn;Kim, Won-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.275-281
    • /
    • 2010
  • In this paper, a geometric similarity law is introduced to the performance test of a large-sized silencer used in ship engine or plant system. A test of scale-down model enable to yield the cost and time saving in developing large-sized silencer considerably. Two types of silencer, resonator and expansion chamber, were analyzed by a theoretical method and an acoustical FEM(finite element method) in order to obtain geometric similarity variables. A method is proposed to estimate the transmission loss of prototype model using the test results of scale-down model. Two actual large-sized silencer, which consist of resonator and expansion chamber, were analysed by an acoustical FE analysis. Consequently, the proposed method predicts effectively the performance of prototype silencers using those of scale-down models.

Noise reduction of noise barrier with noise reducer for high speed train by using scale down model test (축척모형 실험에 의한 고속전철 방음벽용 소음저감 장치)

  • 정성수;전병수;나희승;김준엽;양신추
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.647-652
    • /
    • 2001
  • A noise reduction of noise barrier for high speed train was measured by using scale down model test. A selected types of noise barriers were simple vertical barrier, interference type barrier with plate, interference type barrier with cylindrical pipes. On experiment, in order to make similar present test lane condition, reduced train model and multiple noise sources were considered. As a result. interference type noise barrier with cylindrical pipes is most effective than other barriers. A present height of noise barrier which is established in a test lane is not high enough for reducing patograph noise.

  • PDF

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

The influence of model surface roughness on wind loads of the RC chimney by comparing the full-scale measurements and wind tunnel simulations

  • Chen, Chern-Hwa;Chang, Cheng-Hsin;Lin, Yuh-Yi
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • A wind tunnel test of a scaled-down model and field measurement were effective methods for elucidating the aerodynamic behavior of a chimney under a wind load. Therefore, the relationship between the results of the wind tunnel test and the field measurement had to be determined. Accordingly, the set-up and testing method in the wind tunnel had to be modified from the field measurement to simulate the real behavior of a chimney under the wind flow with a larger Reynolds number. It enabled the results of the wind tunnel tests to be correlated with the field measurement. The model surface roughness and different turbulence intensity flows were added to the test. The simulated results of the wind tunnel test agreed with the full-scale measurements in the mean surface pressure distribution behavior.

Structural Model Test for Strength Performance Evaluation of Fairlead Chain Stopper Installed on MW Class Floating Type Offshore Wind Turbine (메가와트급 부유식 해상풍력발전기용 페어리드 체인 스토퍼의 강도 성능평가를 위한 구조 모형 시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.421-431
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing due to the influence of global warming. In a situation where the installation of floating wind turbines is increasing around the world, concerns about the huge loss and collapse of floating offshore wind turbines due to strong typhoons are deepening. Regarding to the safe operation of the floating offshore wind turbine, the development of a new type of disconnectable mooring system is required. A new fairlead chain stopper considered in this study is devised to more easily attach or detach the floating offshore wind turbine with mooring lines comparing to other disconnectable mooring apparatuses. In order to investigate the structural safety of the initial design of fairlead chain stopper that can be applied to MW-class floating type offshore wind turbine, scale-down structural models were produced using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by performing the tensile tests. The finite element analysis of fairlead chain stopper was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the finite element analysis, the structural weak parts on the fairlead chain stopper were reviewed. The structural model tests were performed considering the main load conditions of fairlead chain stopper, and the test results were compared to the finite element analysis. Through the results of this study, it was possible to experimentally verify the structural safety of the initial design of fairlead chain stopper. It is also judged that the study results can be usefully used to improve the structural strength of fairlead chain stopper in a detailed design stage.