• Title/Summary/Keyword: Dredged material

Search Result 123, Processing Time 0.028 seconds

Experimetnal Verification on the Utilization of Dredged Material for Concrete Mixture (콘크리트 재료로서의 항만준설토의 활용성에 대한 실험적 평가)

  • Oh, Hong-Seob;Lee, Ju-Won;Kim, Su-Ji
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.237-238
    • /
    • 2010
  • The purpose of this research is to develop the method for the beneficial use of dredged material. In this research, authors investigate the material properties of dredged material contained with dredge material of various contents. The compressive strength of cement mortar with 10% dredged material from the Busan harbor is slightly higher than it of conventional mortar, but, it is to need to further research for developing the application technique on the dredged material as the substitutional material of a sand.

  • PDF

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.

Evaluation of Dredged Soil from Detention Basin (유수지 준설매립토의 적정량 산출에 관한 연구)

  • 신은철;오영인;이규홍
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.381-388
    • /
    • 1999
  • Several large scale reclamation projects are being underway along the coastal line in Korea. Therefore the large quantity of economical backfill material is necessary to cope with the shortage of dredged soil. In this study, the amount of volume reduction of dredged soil from detention basin was evaluated based on the laboratory tests. The percentage of soil particles in dredged organic soil is about 12.5∼21.9% by weight. The content of heavy metal and environmental effect for dredged soil itself and solidified dredged soil were analysed and the results are far below than those of environmental requirement.

  • PDF

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.

Evaporation and Desiccation of Soft Dredged Clay (초연약 준설토의 증발 및 건조특성 분석)

  • 정하익;오인규;지성현;이승원;이영남;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.217-222
    • /
    • 2000
  • An understanding of the behaviour of soft clay soils is important in a large number of civil engineering applications, including dredging operations, land reclamation and slurry management such as disposal and storage. Although the details of the behaviour depend on parameters such as the soil mineralogy, the pore water chemistry, the organic content and the microbiology, there are general features that are typical in many cases. The purpose of this paper is to present and discuss some of evaporation and desiccation observed in laboratory experiments under controlled conditions. Desiccation of dredged material is basically removal of water by evaporation which is controlled by weather and material type, etc. This study shows that (1) solar radiation, (2) wind velocity, (3) material depth, (4) trench depth are important factors in desiccation of dredged ultra soft clay.

  • PDF

Pozzolan Activity of Heat-treated Dredged Sea Soil (소성된 항만준설토의 포졸란 반응성 분석)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.43-44
    • /
    • 2016
  • Large amount of dredged sea soil is produced in southeast seashore region in during harbor maintenance. Disposal of dredged sea soil has become difficult due to the environmental regulation. Therefore, disposal of dredged sea soil method is to landfill. But, the capacity of the landfill limit state and if the size of the dredged sea soil is in the range of silt or clay, it cannot be used as reclamation material because ground subsidence occur. In this study, analyzed the pozzolanic activity of dredged sea soil. Analysis of the results showed a pozzolanic activity of dredged sea soil. In addition, incorporation of heat treated dredged sea soil increase both 28 and 56 day compressive strength of mortar specimen.

  • PDF

Preliminary Experiments on Pozzonalic Activity of Dredged Sea Soil (소성 해양 준설토의 포졸란 반응성 시험)

  • Kim, Ji-Hyun;Moon, Hoon;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.49-50
    • /
    • 2014
  • Dredged sea soil contains various contaminants. First priority to recycle dredged sea soil is to pretreat it to remove various contaminants because recycling dredge sea soil without any pre-treatment may cause a secondary contamination due to the leaching of hazardous chemicals. In this study, pretreated dredged sea soil was used to investigate pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined to evaluate pozzolanic activity. According to the results, pretreated dredged sea soil has some possibility to work as a pozzolanic material. When dredged sea soil was heat treated for 90min at 550℃, compressive strength was shown to be comparable to that of plain cement mortar.

  • PDF

Significance of Biomarkers in the Assessment of Dredged Materials for Beneficial Reuses and Disposal (준설물질 유효활용 및 처분을 위한 평가에 있어 생체지표 활용의 재고)

  • Won, Eun-Ji;Choi, Jin Young;Kim, Kyoungrean
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.466-476
    • /
    • 2016
  • Dredging is inevitably necessary for the management of water infrastructure such as waterways and polluted bottom sediment. Dredged material management options may be offshore dumping, wetland creation, beach nourishment and various other engineering uses depending on the given circumstances at the time of dredging. Among those options, wetland creation and beach nourishment are the preferred ones in Korea considering significant loss of wetland and beach erosion due to various development projects along the coastal region. In order to use dredged material beneficially, however, dredged material needs to be assessed its suitability with respect to its engineering purpose and environmental criteria. In this paper, we demonstrate that environmental risk of dredged material to be introduced into the marine environment can be easily assessed using biomarkers with relative low cost. Biomarkers can also compliment pollutant contents analysis that may not be specific to their impact on biological response. Biomarker information may be used to assist decision making process in selecting suitable treatment or beneficial use options for dredged materials.

Engineering Characteristics of Dredged Clay (준설점성토의 공학적 특성)

  • 김승렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.23-35
    • /
    • 1999
  • Although the purpose of dredging in the past was merely as a means of lowering the water level, presently land reclamation from dredged fill is of greater interest. From an economical standpoint, due to the difficulties in acquiring landfill for coastal projects, there is a growing trend toward simply using easily obtainable marine clay for use as fill. But because the ground formed by dredged fill has but low strength and is accompanied by large settlements, it is important that the engineering characteristics be fully investigated. In order to use dredged Masan marine clays as fill material, the engineering characteristics have been studied in this paper.

  • PDF

Utilization of Centrifuge Test in Geoenvironmental Engineering: Consolidation and Contaminant Transport at Capped Dredged Sediment (원심모형실험의 지반환경공학적 이용: 캡핑된 준설퇴적토의 압밀과 오염원 이동)

  • Kim, Tae-Hyung;Kang, Ki-Min;Lee, Jeong-Woo;Jung, Su-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1060-1067
    • /
    • 2006
  • Sandy soils are generally used as a capping material to reduce the pollutants transport from the contaminated dredged sediment. However, dredged material capping is not widely used because regulatory agencies are concerned about the potential for contaminants migration through the cap. Movement of contaminated pore water from sediment into cap is mainly related to sediment consolidation during and after cap placement. To evaluate the significance of consolidation induced transport of contaminants from sediment into cap, research centrifuge tests were conducted. Centrifuge test results illustrate that advection and dispersion are the dominant contaminants transport processes and that capping reduces the potential of contaminant migration from the dredged sediment effectively.

  • PDF