• Title/Summary/Keyword: Dredged soils

Search Result 115, Processing Time 0.026 seconds

잔골재로서 하수준설토의 재활용에 관한 연구

  • Lee, Song;Chae, Jeom-Sik;Kim, Hyeok
    • 레미콘
    • /
    • no.10 s.69
    • /
    • pp.2-11
    • /
    • 2001
  • This paper describes the feasiblity of recycling sewage dredged soils as fine affrefate. This paper describes the feasibility of recycling sewage dredged soils as fine aggregate. The specific gravity of the dredged soils was smaller than that of sand due to the effect of dredged sludge. However, the grain size distribution of the dredged soils is relative well graded, and the results of the heavy metal concentration from the leaching test of the dredged soils was significantly lower than the requirements of the allowable criteria. Therefore, the effect of recycling of dredged soils on environment the as fine aggregate was negligible. Also, the specific gravity of the dredged and washed soils was similar to that of sand, and the dredged and washed soils for the most part showed lower heavy metal leaching characteristics than those of dredged soils, Also, the results of the study for evaluation the recycling feasibility of dredged and washed soils as fine affrefate. The organic impurity content of the dredged and washed soils was lower than the requirements of the Korean industrial Standards, and the mortar compressive strength using the washdredged soils also met those of the Korean industrial Standards. And, the strengths of the dredged and washed soils were over 95% of those of the NaOH-treated samples. Therefore, it is expected that the dredged soils will be able to be an alternative for fine aggregate.

  • PDF

Strength Characteristics of Light-Weighted Soils Mixed with EPS and Dredged Soils (준설토와 EPS를 혼합한 경량혼합처리토의 강도 특성)

  • 김수삼;김병일;한상재;신현영
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2002
  • Recycling of dredged soils as construction materials is experimently discussed in this paper. The strength of light-weighted soils(LWS) consisting of expanded polystyrene(EPS), dredged soils and cement is characterized by uniaxial and triaxial compression tests with varying initial water contents of dredged soils, the EPS volume and cement contents, and expanded ratio of EPS. Test results show that the strength of light-weighted soils increases with adding cement contents, whereas the strength increases with decreasing initial water contents of dredged soils and expanded ratio of EPS. It was, however, found that increasing the EPS volume makes a lower the strength of light-weighted soils.

Injection Effects of Coagulant and Flocculant on Bulking Change of Dredged Soils (준설토 체적변화에 대한 응집제 및 응결제의 주입효과)

  • 윤길림;유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • Bulking change between sediments and dredged soils occurs when dredged soils are fully disturbed by dredging process and settled down to stabilized conditions in the basin. Bulking of dredged soils are affected by chemical injection, coagulant and flocculant, to speed up settling process of the suspended solids. In this paper, bulking changes of dredged soils are investigated by experimental works regarding injection effects of the coagulant and flocculant. Dredged sediments were sampled in the lagoon located at the East Coast, and the bulking change of dredged soils is quantitatively analysed by changing the clay content and the amount of the coagulant and flocculant. The optimal amounts of the coagulant and flocculant are determined based on minimal bulking change due to coagulant and flocculant injection. From the experimental results, the bulking of dredged soils increased 1.69 times on the average and the bulking change rate slightly increased as clay content increasea due to injection of the coagulant and flocculant.

A Study on the Mechanical Characteristic and Shear Strength haracteristic on Elapsed Time of the Western Sea Dredged Soils (서해안 준설토의 역학적 특성 및 시간경과에 따른 강도 특성에 관한 연구)

  • Kim, Hongtaek;Han, Yeonjin;Yu, Wandong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.31-41
    • /
    • 2013
  • The dredged soils of western sea of Korea have been used as the fill materials because it possess the characteristics that constitute silt, silty sand and sand mainly. However, a study on dredged soils as the fill materials is insufficient. Hence, in this present study, the application the dredged soils of western sea of Korea as the fill materials was confirmed. Primary, the composition characteristics of the ground was analyzed to confirm the application on dredged soils as the fill materials by the piezo-cone penetration test. In laboratory test, it was performed the self-weight consolidation test for mechanical characteristics of the dredged soils. The direct shear test using self-weight consolidation test sample for shear strength characteristics was performed after self-weight consolidation test. Additionally, the mechanical characteristics of the dredged soils on elapsed time using self-weight consolidation test sample, which is drained naturally, was evaluated. The dredged soils of western sea of Korea show that unit weight and shear strength is increased as natural drain time elapses.

A Study on the Volumetric Change of Sewage Dredged Soils (하수준설토의 체적변화에 관한 연구)

  • Lee, Song;Lee, Moo-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1167-1174
    • /
    • 2005
  • This paper describes on the volume change of Sewage Dredged Soils by using laboratory test and volumetric change test. The tremendous change of Moisture Content occured in the Sewage Dredged Soils during the Elapsed Time. The Unit Weight increases during the normally shrinkage limit void ratio and then the unit weight decrease. A volume of Sewage Dredged Soils according to the moisture content is a difference maximum 2.5 times. And there is the difference 3.5 times according to the change of unit weight. Therefore, the moisture content and unit weight computation are very important for the computation on the volume of Sewage Drdeged Soils.

  • PDF

A Study on the Analysis of Reusability of Marine Dredged Fine-grained Soils (해양 준설세립토의 재사용성 분석에 관한 연구)

  • Kim, Chaemin;Mork, Jeongheum;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.5-12
    • /
    • 2015
  • A large amount of dredged soils occur in the marine purification project but dredged fine-grained soils have been abandoned as a waste. The standards as filling materials, banking materials, revetment blocks and concrete blocks were surveyed. Through the geotechnical tests of marine dredged fine-grained soils and the alkali-activation reaction, the usability as banking materials, revetment blocks and concrete blocks were analyzed. Dredged sands could be used as banking materials, and dredged fine-grained soils could be used as filling materials. A mixture of dredged fine-grained soils and dredged sands could be used as banking materials. Materials produced by the alkali-activation reaction could be used as a revetment block and a concrete block.

Assessment of Dredged Soils and Sediments Properties in the Lower Reach of Nakdong River and Coastal Areas of Busan for Beneficial Uses (낙동강 하류 및 부산연안지역의 준설토와 퇴적토 활용을 위한 특성 평가)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.57-66
    • /
    • 2013
  • Although the quantity of dredged soils has increased owing to recent new harbor construction, sea course management, polluted sediment dredging, and four-river project, the reuse or recycling of those dredged soils has not done properly in Korea. To develop measures to utilize them in various ways for reuse or recycling, the biophysicochemical properties of dredged soils and sediment were assessed in this study. Samples were classified according to their sources-river and sea-by location, and as dredged soil and sediment depending on storage time. The results showed that dredged materials from the sea have high clay content and can be used for making bricks, tiles, and lightweight backfill materials, while dredged materials from the river have high sand content and can be used in sand aggregates. Separation procedures, depending on the intended application, should be carried out because all dredged materials are poorly sorted. All dredged soils and sediments have high salinity, and hence, salts should be removed before use for cultivation. Since dredged materials from the sea have adequate concentrations of nutrients, except phosphate, they can be used for creating and restoring coastal habitats without carrying out any additional removal processes. The high overall microbial activities in dredged materials from the river suggested that active degradation of organic matter, circulation of nutrients, and provision of nutrients may occur if these dredged materials are used for cultivation purpose.

A Study on Bulking Change of Dredged Soils by Pump Dredger (펌프준설에 의한 준설토의 체적변화에 관한 연구)

  • Kim, Chan-Soo;Yoon, Gil-Lim;Park, Heung-Gyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.5-11
    • /
    • 2004
  • When settled sediments in natural condition for long time were dredged by dredging process, it is natural that bulking change between sediments and dredged soils is affected by chemical injection; coagulant. Dredged sediments used in this study were sampled in the lagoon "Young rang lake" located at the east coast Sokcho city and the bulking change of dredged soils is quantitatively analysed by changing of the clay content and the amount of the flocculant and coagulant. From the experimental results, the bulking of dredged soils increased 1.69 times on the average bulking of settled sediments in natural condition in the case of the optimum chemicals addition.

  • PDF

A Study on the Determination of Loss Ratio in Dredged Soils (준설토의 유실율 결정에 관한 연구)

  • 김석열;김승욱;노종구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.606-611
    • /
    • 1999
  • Recently , the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materialss. The method of hydraulic fill i recalmation is executed by transporting the mixture of water -soil particles into a relcaimed land through dredging pipes, then the dredged soil particels settle down in thewater orflow over an out flow weir with the water. The amount of the volume reductions of dredged soil is considered the sum of the overall settlement by descication shrinkage and self-weigth consolidation and the loss of soil particles flow over a weir. In the present study, hydrometer analysis was performed with the soil samples obtained bofore and after dredging to estimate the amount of soil particles residual at reclaimed area and the loss of soil particles , then it was suggested the method of determining the loss ratio of dredged soils from the tests results. The hydrometer analysis of in-situ soil samples showed that the loss ratio of dredged soils is lowest at the nearest point to dredge pipe and highest at the nearest point of out flow weir.

  • PDF

Physico-Chemical Properties of Dredged Soils as Planting Soil (식재지반 용토로서 준설토의 이화학적 특성)

  • Kim, Won-Tae;Yonn, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.95-102
    • /
    • 2005
  • This study was carried out to find out the heavy metal contents and the physico-chemical properties for the improvement of dredged soils which widely exist in lowlands of Korea. At first all the average heavy metal contents were close to background level and were much lower than concern level of the Soil Environment Conservation Act of Korea. And the results of physical analyses of soils showed on the average $2.46\~2.74 Mg/m^3$ in Particle density, $0.45\~2.45 kg/kg$ in soil water contents, $0.34\~0.90 Mg/m^3$ in bulk density, $0.67\~0.87m^3/m^3$ in porosity, $2.18\times10^{-5}\~1.20\times10^{-8} m/s$ in saturated hydraulic conductivity, R0.12\~0.65 m^3/m^3$ in available water contents. Finally the results of chemical analyses of soils showed on the average $6.5\~8.2\;in\; pH,\;5\~48 g/kg\;in\; OM,\;0.48\~4.51g/kg\;in\;T-N,\;19\~25mg/kg$ in available phosphate, $0.28\~11.80 dS/m\;in\;EC,\;8.7\~38.1cmol/kg$ in CEC, respectively Accordingly, the physicochemical properties of soils ought to be analyzed accurately before dredging for effective using of dredged soils. And it will be more effective, if the dredged soils are used with proper balance among each content of components with consideration to the physicochemical properties of common soils.