• Title/Summary/Keyword: Dredging Operation

Search Result 42, Processing Time 0.023 seconds

Evaluation and management of work process in dredger using ECDIS (ECDIS에 의한 준설선의 작업공정 관리 및 평가)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.3
    • /
    • pp.212-221
    • /
    • 2007
  • This paper describes on the evaluation and management of work process in suction hopper dredger and grab bucket dredger as an application of a PC-based ECDIS system. The dynamic tracking of dredging bucket and the data logging of grab dredging information were performed by using the grab dredging vessel "Kunwoong G-18". The position and route tracking of the dredger moving toward the ocean dumping site of dredged material was performed by using the hopper dredging vessel "Samyang-7". The evaluation of wok process in the dredging field, for grab dredger, was continuously carried out on January to May, 2006, in Incheon Hang and for hopper dredger, on July to December, 2003, in Busan Hang, Korea. The dredging information, such as dredger's position, heading, dredging depth and route track which was individually time stamped during the dredging operation, was automatically processed in real-time on the ECDIS and displayed simultaneously on the S-57 ENC chart. From these results, we conclude that the ECDIS system can be applied as a tool in order to manage the work process during the dredging operation, and also in order to generate the factual record of the dredging activities that is sufficient for dredging inspector to accurately evaluate the contract performance even in the absence of a full-time onboard inspector.

Real-time monitoring of grab dredging operation using ECDIS (ECDIS에 의한 grab 준설작업의 실시간 모니터링에 관한 연구)

  • Jung, Ki-Won;Lee, Dae-Jae;Jeong, Bong-Kyu;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • This paper describes on the real-time monitoring of dredging information for grab bucket dredger equipped with winch control sensors and differential global positioning system(DGPS) using electronic chart display and information system(ECDIS). The experiment was carried out at Gwangyang Hang and Gangwon-do Oho-ri on board M/V Kunwoong G-16. ECDIS system monitors consecutively the dredging's position, heading and shooting point of grab bucket in real-time through 3 DGPS attached to the top bridge of the dredger and crane frame. Dredging depth was measured by 2 up/down counter fitted with crane winch of the dredger. The depth and area of dredging in each shooting point of grab bucket are displayed in color band. The efficiency of its operation can be ensured by adjusting the tidal data in real-time and displaying the depth of dredging on the ECDIS monitor. The reliance for verification of dredging operation as well as supervision of dredging process was greatly enhanced by providing three-dimensional map with variation of dredging depth in real time. The results will contribute to establishing the system which can monitor and record the whole dredging operations in real-time as well as verify the result of dredging quantitatively.

Analysis of Dredging Efficiency for Operation of Dredging Cutter Head (준설용 커터헤드 운영방식에 따른 준설효율 향상특성 분석)

  • Chae, Dongseok;Park, Jae-Hyeon;Kim, Young Do;Kim, Myunghak;Lee, Mansoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.5-9
    • /
    • 2009
  • In this experiment, the cutter head was designed as the down-scaled shape from the cutter head of the Asan-3 of Hyundai Construction Company. The dredging simulation instrument was installed in the experiment water tank which has the dimension of $4.2m(L){\times}2.2m(W){\times}1.5m(H)$. The speed of all components were controlled manually through the hydraulic tool and motors to find the effective desilting condition. As the results, the experiment was conducted to find the optimate dredging cutter head operation rate. To compare the factors which effect on the dredging effectiveness, the dimensionless dredging volume ratio was introduced and it can be found the best effectiveness at 2.0 m/s suction speed, 8 cm dredging depth and 4~4.5 dimensionless dredging volume ratio. Therefore, in order to take the best effectiveness these 3 components factors should be adequately considered.

  • PDF

Modeling for Prediction of Water Quality According to Dredging Operation (퇴적물 준설에 따른 수환경 영향 예측 모의)

  • Ahn, Jae-Hwan;Kim, Mee-Kyung;Lee, Mi-Kyung;Hwang, Byung-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1228-1237
    • /
    • 2005
  • In order to predict the long-term effects of pollutants in sediment on the water quality and the improvement of water quality according to dredging operation, models applied to decide the location and the propriety of dredging were developed. At first, the area was divided into several segments and the developed model was applied to simulate the behaviors of contaminants in an aquatic environment by using estimated parameters. And then through the sensitivity analysis between parameters, the optimum values were determined. The long-term modelling in the area A forecasted that PCBs concentration in the hot spot was decreased from $3.1\;{\mu}g/L$ to $2.4\;{\mu}g/L$ in 30 years. Contaminants in sediment as a source of water pollution did not reduce remarkably in the long run. Therefore it is difficult to expect the improvement of water qualities without the fundamental isolation of contaminants from sediment. It is considered that the selective dredging in the spot improves the water quality consequently.

Analysis of the Effect of Dredging and Weirs on Bed Change in the Nakdong River and its Tributary using HEC-6 (HEC-6를 이용한 준설 및 보로 인한 낙동강 본류 및 지류 하상변화 분석)

  • Ahn, Jung Min;Kwak, Sunghyun;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.743-756
    • /
    • 2015
  • It is necessary to evaluate the effect of dredging and weir operation on the flow and long-term bed change for river management. Especially, large scale river treatment project, with dredging or weir installation and operation, can increase the instability of riverbed in tributaries as well as mainstream. This study focuses on the effect of weir installation and dredging on the long-term bed change in Nakdong river (Gangjeong- Goryeong Weir~Dalseong Weir) and its tributary (Geumho river). HEC-6 model has been used to analyze the amount of long-term bed change and sediment transport resulted from the river treatment including dredging or weir installation. From the result, it was concluded that a large scale river treatment can accelerate and increase the long-term bed change both in mainstream and tributary.

The Behavior of Effluent Discharged from the Confined Dumping Facility (제한투기시설에서 배출되는 여수의 거동)

  • 정대득;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

The Study of Seabed Organic Sediment Dredging Equipment Development Used the Pressure Difference (수두차를 이용한 해저 유기퇴적물 준설장비 개발에 관한 기초연구)

  • SON CHOONG-YUL;JEONG UH-CHEUL;EEO JOON;CHOI JAE-KWON;LEE JUNG-TAK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.57-61
    • /
    • 2004
  • According to the research result of existing regarding the seabed organic sediment, contamination it flows from the land and the sea become the enemy in the coastal water. It was caused with the summer season water temperature rise and dispersing recall respect advancement. Phosphorus which is a main reason of red tide actual condition came to reveal vast quantity with the facts that it gushes. Specially, in the case of the coastal closing waters and the nursery, as the corpse and the fresh fish washing veterinarian was imbrued, it is the actual condition where is more deepened. Consequently the development of shallow layer dredging method of that suction power which is stabilized is demanded to be able to dredge only the sediment layer which has not become the pressure and is a main reason of being imbrued. The dredging methods using the pressure difference minimize the suction of the seabed sediment. This method is stable that suction power which occurs from guard difference of the guard and the guard of the dredging system inland water. That's why it is possible to sort dredging of the organic sediment ranging in upper layer sediment and it will be able to expect the minimization of dredging quantity. Increase of the expense that it followsin orthocenter with the fact will not grow. Because the pressure difference of the dredger inland water is occurred by the suction power. Maintenance administrative costs are reduced, because the one of smallest dredging system maneuvers and the barge which affixes an integrated operation system is mainly in a resting. To reduce a dredging hour, it will be able to solve in the condensed water as operating the jar guard post.

  • PDF

A Study on Mixing Behavior of Dredging Turbidity Plume Using Two-Dimensional Numerical Model (이차원 수치모형을 이용한 준설 탁도플륨의 혼합거동 연구)

  • Park, Jae Hyeon;Kim, Young Do;Lee, Man Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.59-69
    • /
    • 2013
  • The numerical simulations were performed to analyze the advection-diffusion processes of dredging-induced turbidity plume using RMA2 and RMA4 models in Bunam reservoir, Seosan, Chungnam. Field survey was also performed to measure the turbidity using the multi water quality monitoring system (YSI6600EDS). In the field survey, the vertical and horizontal distributions of the turbidity were measured during the dredging operation in Bunam reservoir. RMA2 model was used to simulate the velocity distributions in both the whole domain and the 2nd part of Bunam reservoir. RMA4 model was also used to simulate the concentration distribution in only the 2nd part of Bunam reservoir, where the dredging work were conducted. The comparison of the simulation results with the field data for the advection-diffusion of the turbidity plume using the concentration ratio concepts shows that the numerical model can be applied to analyze the environmental impact of dredging works.

3-D Dispersive Transport Model for Turbidity Plume induced by Dredging Operation (준설 탁도플륨의 3차원 이송확산 거동 모형)

  • Kang, See Whan;Kang, In Nam;Lee, Jung Lyul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.557-562
    • /
    • 2006
  • In order to predict the dispersion of suspended sediment arising from dredging operation in port and navigation channel, a hybrid model for dispersive transport of turbidity plume was developed using Lee's(1998) hybrid method. Using hybrid modeling scheme advection-diffusion equation was solved by the forward particle-tracking method for advection process and by the fixed Eulerian grid method for diffusion process. To examine numerical model simulation in accuracy, the simulated results for 1-D, 2-D, and 3-D cases were compared with the analytical solutions including Kuo, et al's (1985) 3-D mathematical model. The model results were in a good agreement with the analytical solutions and mathematical model for the dispersion of turbidity plume.

Numerical Modeling for Sedimentation Characteristics of the Lower Nakong River and Sediment Dredging Effects at the Nakdong River Estuary Barrage (낙동강 하류의 유사특성과 낙동강하구둑 준설효과에 관한 수치모의 연구)

  • Ji, Un;Julien, Pierre Y.;Park, Sangkil;Kim, Byungdal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.405-411
    • /
    • 2008
  • The Nakdong River Estuary Barrage (NREB) was constructed in 1987 to prevent saltwater intrusion and to provide the sustainable water supply in the upstream channel. Sediment dredging has been conducted to eliminate deposited sediments in the approached upstream channel of the NREB. Fluvial changes and sedimentation problems have been continued due to urbanization and development in the watershed as well as construction of the NREB. However, the sufficient field monitoring and researches for sedimentation characteristics and bed changes have not been performed after construction of the NREB. Therefore, bed elevation changes and seasonal sediment concentration distribution were analyzed using the quasi-steady state model with historical field data in this study. The water surface elevation changes with and without sediment dredging operation were calculated using the developed quasi-steady state model and finally the sediment dredging effects were evaluated.