• Title/Summary/Keyword: Drift diffusion approximation

Search Result 29, Processing Time 0.034 seconds

The study of electron transport coefficients in pure $CF_4$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CF_4$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.29-32
    • /
    • 2001
  • We measured the electron transport coefficients(the electron drift velocity, W, and the longitudinal diffusion coefficient, $D_L$) in pure $CF_4$ over the E/N range from 0.04 Td to 250 Td by the double shutter drift tube. And these electron transport coefficients in pure $CF_4$ were calculated over the E/N range from 0.01 to 250 Td at 1 Torr by using the two-term approximation of the Boltzmann equation.

  • PDF

Determination of the Inelastic cross Sections for $C_{3}F_{8}$ Molecule by electron Swarm Study

  • Jeon, Byung-Hoon;Ha, Sung-Chul;Yang, Jeong-Mo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • We measured the electron transport coefficients, the electron drift velocity, W, and the longitudinal diffusion coefficient, $D_{L}$, over the E/N range from 0.03 to 100 Td and gas pressure range from 0.133 to 122 kPa in the 0.526% and 5.05% $C_{3}F_{8}$-Ar mixtures by the double shutter drift tube with variable drift distance. And we calculated these electron transport coefficients by using multi-term approximation of Boltzmann equation analysis. We determined the electron collision cross sections set for $C_{3}F_{8}$ molecule by the comparison of measurement and calculation. Our special attention in the present study was focused upon the inelastic collision cross sections of the $C_{3}F_{8}$ molecule.

  • PDF

The study of electron transport coefficients in pure $CO_2$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CO_2$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Kim, Ji-Yeon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.164-167
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure $CO_2$ were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of $CO_2$ molecular gas. And for propriety of two-term approximation of Boltzmann equation analysis, the calculated results compared with the electron transport coefficients measured by Nakamura.

  • PDF

The study of electron transport coefficients in pure Xe by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 Xe분자가스의 전자수송계수의 해석)

  • Ma, Su-Young;Jeon, Byung-Hoon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.174-177
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Xe were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Xe molecular gas.

  • PDF

The study of electron transport coefficients in pure Ne by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 Ne분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Gang, Myung-Hee;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.182-185
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure Ne were calculated over the wide E/N range from 0.01 to 300 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of Ne molecular gas.

  • PDF

A Monte-Carlo method and Boltzmann Equation analysis on the electron swarm parameter in SiH$_4$+Ar mixtures gas. ($SiH_4+Ar$ 혼합기체의 전자군 파라미터에 대한 볼츠만 방정식 및 몬테 칼로법 해석)

  • 김대연;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.387-390
    • /
    • 1999
  • Electron swarm parameterdthe drift velocity and longitudinal diffusion coefficienthn $SiH_4-Ar$ mixtures containing 0.5% and 5% monosilane were measured using over the range of E/N from 0.01 to 300 Td at room temperature. Electron swarm parameters in argon were drastically changed by adding a small amount of monosilane. The electron drift velocity in both mixtures showed unusual behaviour against E/N. It had negative slope in the medium range of E/N, yet the slope was not smooth but contained a small hump. The longitudinal diffusion coefficient also showed a corresponding feature in its dependence on E/N. A two-tern approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

  • PDF

The Study of Electron Transport coefficients in $SiH_4$-Ar Mixtures by Using Boltzmann Equation Analysis and Monte-Carlo Simulation (볼츠만방정식과 몬테칼로법에 의한 $SiH_4$-Ar 혼합가스의 전자수송계수에 관한 연구)

  • 하성철;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.169-174
    • /
    • 2001
  • The electron transport coefficients(the electron drift velocity, W, and the longitudinal and transverse diffusion coefficient, D$_{L}$ and D$_{T}$) in SiH$_4$-Ar mixtures containing 0.5% and 5.0% monosilane were calculated over the E/N range from 0.01 to 300 Td and over the gas pressure range 0.5, 1.0 and 1.5 Torr by the time-of-flight(TOF) method of the Boltzmann equation(BE.) and Monte-Carlo simulation(MCS). The electron energy distribution function in each SiH$_4$-Ar mixtures at E/N=10 Td and L=0.2 cm, which in equilibrium region in the mean electron enregy were compared.red.

  • PDF

Characteristics of Electron Transport in $SiH_4$ Gas used by MCS-BEq Algorithm (MCS-BEq 알고리즘에 의한 $SiH_4$ 기체의 전자수송특성)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.159-162
    • /
    • 2006
  • In this paper energy distribution function in $SiH_4$ has been analysed over the E/N range 0.5${\sim}$300Td and Pressure value 0.5, 1.0, 2.5 Torr by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50Td for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values.

  • PDF

Electron Swarm Drift Velocity and Characteristic Energy in e$^{[-10]}$ -CF$_4$Scattering (e ̄-CF$_4$산란의 전자이동속도 및 특성에너지 연구)

  • 임상원;유회영;김상남;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.169-174
    • /
    • 1996
  • In this paper, the electron transport characteristic in CF$_4$has been analysed over the E/N range 1~300(Td) by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The alteration of cross sections from the literature is avoided as much as possible in the analysis. The motion has been calculated to give swarm parameters for the electron drift velocity(W), diffusion coefficient(D$_{L}$), the ratio of the diffusion coefficient to the mobility(D$_{L}$/$\mu$), mean energy($\varepsilon$), the electron energy distribution function. The electron energy distribution function has been analysed in CF$_4$at E/N=50, 100 and 200(Td) for a case of the equilibrium region in the mean electron energy. The results of Boltzmann equation and Monte Carlo simulation have been compared with experimental data by Y. Nakamura and M. Hayashi.shi.

  • PDF

The Effect of Electron Diffusion on the Instability of a Townsend Discharge (전자 확산 효과가 Townsend 방전 불안정성에 미치는 영향)

  • Mikhailenko, Vladimir
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • The role of the electron diffusion on the stability of a Townsend discharge was investigated with the linear stability theory for the one-dimensional fluid equation with drift-diffusion approximation. It was proved that the discovered instability occurs as a result of the coupled action of electron diffusion and the perturbed electric field by space charge. The larger electron diffusion results in the faster growth rate at the regime of small perturbation of the electric field by space charges.