• Title/Summary/Keyword: Drone recognition

Search Result 53, Processing Time 0.024 seconds

Development of Face Recognition System based on Real-time Mini Drone Camera Images (실시간 미니드론 카메라 영상을 기반으로 한 얼굴 인식 시스템 개발)

  • Kim, Sung-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, I propose a system development methodology that accepts images taken by camera attached to drone in real time while controlling mini drone and recognize and confirm the face of certain person. For the development of this system, OpenCV, Python related libraries and the drone SDK are used. To increase face recognition ratio of certain person from real-time drone images, it uses Deep Learning-based facial recognition algorithm and uses the principle of Triples in particular. To check the performance of the system, the results of 30 experiments for face recognition based on the author's face showed a recognition rate of about 95% or higher. It is believed that research results of this paper can be used to quickly find specific person through drone at tourist sites and festival venues.

Analysis of Drone Target Search Performance According to Environment Change

  • Lim, Jong-Bin;Ha, Il-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1178-1186
    • /
    • 2019
  • In recent years, interest in drones has grown, and many countries are developing them into a strategic industry of the future. Drones are not only used in industries such as logistics and agriculture but also in various public sectors such as life rescue, disaster investigation, traffic control, and firefighting. One of the most important tasks of a drone is to accurately identify targets in these applications. Target recognition may vary depending on the search environment of the drone. Therefore, this study tests and analyzes the drone's target recognition performance according to changes in the search environment such as the search altitude and the search angle. In addition, we propose a new algorithm that improves upon the disadvantages of the Haar cascade method, which is the existing algorithm that recognizes the target by analyzing a captured image.

Implementation and Verification of Artificial Intelligence Drone Delivery System (인공지능 드론 배송 시스템의 구현 및 검증)

  • Sungnam Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 2024
  • In this paper, we propose the implementation of a drone delivery system using artificial intelligence in a situation where the use of drones is rapidly increasing and human errors are occurring. This system requires the implementation of an accurate control algorithm, assuming that last-mile delivery is delivered to the apartment veranda. To recognize the delivery location, a recognition system using the YOLO algorithm was implemented, and a delivery system was installed on the drone to measure the distance to the object and increase the delivery distance to ensure stable delivery even at long distances. As a result of the experiment, it was confirmed that the recognition system recognized the marker with a match rate of more than 60% at a distance of less than 10m while the drone hovered stably. In addition, the drone carrying a 500g package was able to withstand the torque applied as the rail lengthened, extending to 1.5m and then stably placing the package down on the veranda at the end of the rail.

Guidelines for Data Construction when Estimating Traffic Volume based on Artificial Intelligence using Drone Images (드론영상과 인공지능 기반 교통량 추정을 위한 데이터 구축 가이드라인 도출 연구)

  • Han, Dongkwon;Kim, Doopyo;Kim, Sungbo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.147-157
    • /
    • 2022
  • Recently, many studies have been conducted to analyze traffic or object recognition that classifies vehicles through artificial intelligence-based prediction models using CCTV (Closed Circuit TeleVision)or drone images. In order to develop an object recognition deep learning model for accurate traffic estimation, systematic data construction is required, and related standardized guidelines are insufficient. In this study, previous studies were analyzed to derive guidelines for establishing artificial intelligence-based training data for traffic estimation using drone images, and business reports or training data for artificial intelligence and quality management guidelines were referenced. The guidelines for data construction are divided into data acquisition, preprocessing, and validation, and guidelines for notice and evaluation index for each item are presented. The guidelines for data construction aims to provide assistance in the development of a robust and generalized artificial intelligence model in analyzing the estimation of road traffic based on drone image artificial intelligence.

A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone (객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구)

  • Simun Yuk;Hweerang Park;Taisuk Suh;Youngho Cho
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.119-125
    • /
    • 2023
  • Through the Ukraine-Russia war, the military importance of drones is being reassessed, and North Korea has completed actual verification through a drone provocation towards South Korea at 2022. Furthermore, North Korea is actively integrating artificial intelligence (AI) technology into drones, highlighting the increasing threat posed by drones. In response, the Republic of Korea military has established Drone Operations Command(DOC) and implemented various drone defense systems. However, there is a concern that the efforts to enhance capabilities are disproportionately focused on striking systems, making it challenging to effectively counter swarm drone attacks. Particularly, Air Force bases located adjacent to urban areas face significant limitations in the use of traditional air defense weapons due to concerns about civilian casualties. Therefore, this study proposes a new passive air defense method that aims at disrupting the object detection capabilities of AI models to enhance the survivability of friendly aircraft against the threat posed by AI based swarm drones. Using laser-based adversarial examples, the study seeks to degrade the recognition accuracy of object recognition AI installed on enemy drones. Experimental results using synthetic images and precision-reduced models confirmed that the proposed method decreased the recognition accuracy of object recognition AI, which was initially approximately 95%, to around 0-15% after the application of the proposed method, thereby validating the effectiveness of the proposed method.

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

The Effect of Local Residents' Recognition Factors on Drone Capability on Industry Revitalization - On the basis of demand satisfaction - (지역주민의 드론 역량 강화요인 인식이 산업 활성화에 미치는 영향 - 수요만족도를 매개로 -)

  • Han, Gab-Su
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.125-130
    • /
    • 2019
  • The utilization and value of drones are increasing throughout society. However, there was a lack of government support and investment such as lack of technology of domestic drone companies, regulation of loans and lack of technology evaluation items. Therefore, this paper conducts statistical analysis to derive what drone capacity should be strengthened for the drone industry activation in Daegu. As a result, the demand satisfaction(price, quality, service) of drones leads to revitalization of drone industry when the physical, social, and policy factors among drones are strengthened. In conclusion, drone capacity to be strengthened in order to revitalize the drone industry in Korea is based on physical factors(drone demand, development, number of registrations, number of businesses and workers), social factors(national level public relations, establishment of public education institutes, correct understanding of drone occupation, preception), policy factors(privacy measures, government funding, legislation and system easing). As for the three factors, the government, industry, and drone operators are expected to have a bright future when the trinity is improved and complemented.

Experimental Study of Drone Detection and Classification through FMCW ISAR and CW Micro-Doppler Analysis (고해상도 FMCW 레이더 영상 합성과 CW 신호 분석 실험을 통한 드론의 탐지 및 식별 연구)

  • Song, Kyoungmin;Moon, Minjung;Lee, Wookyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2018
  • There are increasing demands to provide early warning against intruding drones and cope with potential threats. Commercial anti-drone systems are mostly based on simple target detection by radar reflections. In real scenario, however, it becomes essential to obtain drone radar signatures so that hostile targets are recognized in advance. We present experimental test results that micro-Doppler radar signature delivers partial information on multi-rotor platforms and exhibits limited performance in drone recognition and classification. Afterward, we attempt to generate high resolution profile of flying drone targets. To this purpose, wide bands radar signals are employed to carry out inverse synthetic aperture radar(ISAR) imaging against moving drones. Following theoretical analysis, experimental field tests are carried out to acquire real target signals. Our preliminary tests demonstrate that high resolution ISAR imaging provides effective measures to detect and classify multiple drone targets in air.

Study on Design of Two-Axis Image Stabilization Controller through Drone Flight Test Data Standardization

  • Jeongwon, Kim;Gyuchan, Lee;Dong-gi, Kwag
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.470-477
    • /
    • 2022
  • EOTS for drones is showing another aspect of market expansion in detection and recognition areas previously occupied by artificial satellites. The two-axis EOTS for drones controls the vibration or disturbance caused by the drone during the mission so that EOTS can accurately recognize the goal. Vibration generated by drones is transmitted to EOTS. Therefore, it is essential to develop a stabilization controller that attenuates vibrations transmitted from drones so that EOTS can maintain the viewing angle. Therefore, it is necessary to standardize drone disturbance and secure the performance of EOTS disturbance attenuation controller optimized for disturbance level through this. In this paper, a method of standardizing drone disturbance applied to EOTS is studied, through which EOTS controller simulation is performed and stabilization controller shape is selected and designed.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.