• Title/Summary/Keyword: Droplet deformation

Search Result 42, Processing Time 0.027 seconds

Aerodynamically Progressed Taylor Analogy Breakup (APTAB) Model for Accurate Prediction of Spray Droplet Deformation and Breakup (액적의 변형 및 분열의 정확한 예측을 위한 공기역학적으로 진보된 APTAB 모델)

  • Park, Jong-Hoon;Hwang, Sang-Soon;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.53-60
    • /
    • 2000
  • An aerodynamically progressed model, which is called APTAB model. has been proposed for more accurate prediction of the deformation and breakup of a spray. Especially, the effects of the droplet deformation on the droplet aerodynamic external force are considered in this model, which was neglected in TAB model. It is found that the predicted droplet deformation using APTAB model shows better agreement with experimental data than those of other models for the droplets in both bag-type and shear-type breakup regimes. A new breakup criterion has been proposed to predict more reasonable breakup quantities, such as breakup deformation length, time and so on; i.e., it is defined that the breakup occurs when the internal liquid phase pressure of the deformed droplet at the equator is greater than that of the pole. The proposed breakup criterion shows more physical relationship between the degree of droplet deformation at breakup and the corresponding breakup Weber number as compared with the results with TAB and DDB models. Therefore, it provides better predictions of the experimental data than TAB and DDB models for the droplet deformation and time in both bag-type and shear-type breakup regimes.

  • PDF

Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field (고온 고압 유동장에서 햅탄 액적의 기화 특성)

  • Ko, Jung-Bin;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

Study on Characteristics of a Droplet in Two-dimensional Channel with Moving Bottom Wall (바닥면이 움직이는 이차원 채널 내 액적의 특성 연구)

  • Kim, Hyung-Rak;Yoon, Hyun-Sik;Jeong, Hae-Kwon;Ha, Man-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.103-110
    • /
    • 2011
  • A two-dimensional immiscible droplet deformation phenomena on moving wall in a channel has been investigated by using lattice Boltzmann method involving two-phase model. The dependence of the deformation of the droplet with different sizes on the contact angle and the velocity of bottom wall has studied. When the bottom wall starts to move, the deformation of the droplet occurs. For the largest bottom wall velocity, eventually, the deformation of the droplet is classified into the three patterns according to the contact angle.

Wall-Droplet Interaction Modeling and Comparative Study on Deformation Models for the Improvement of Icing Analysis Under SLD Conditions (SLD 조건에서 착빙 해석 정확도 개선을 위한 Wall-Droplet Interaction 수치 모델링 및 Deformation 모델 비교 연구)

  • Bae, Jinkyu;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.255-267
    • /
    • 2020
  • Under SLD conditions, due to the large size of droplets, physical phenomena such as wall-droplet interaction and deformation have a significant effect on the icing process. Accordingly, many studies have been conducted in order to computationally simulate SLD effects. As one of the efforts, post-processing method have been proposed to describe wall-droplet interaction effect, which modified collection efficiency using Wright model. However, since the model doesn't properly consider the wall condition, it still overestimated collection efficiency and impingement limit. To solve this problem, impingement areas were divided into 3 different regions, and the post-processing method was introduced with the new wall-droplet interaction model developed based on Bai and Gosman rebound model. In order to consider the effect of deformation, the most suitable model was selected by comparing the deformation models used in the various icing codes. As a result, the modified post-processing method showed improved accuracy in predicting the impingement limits and collection efficiency by further estimating mass flux loss due to rebound, and it was observed that the result was the closest to the experimental data when the deformation effect was included by using Wiegand model.

Effect of Ultrasonic Frequency on the Atomization Characteristics of Single Water Droplet in an Acoustic Levitation Field (음향 부양장(acoustic levitation field)에서 초음파 주파수(ultrasonic frequency)에 따른 단일 액적의 미립화 특성)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.126-131
    • /
    • 2013
  • This paper describes the effect of ultrasonic frequency(f) on the atomization and deformation characteristics of single water droplet in an acoustic levitation field. To achieve this, the ultrasonic levitator that can control sound pressure and velocity amplitude by changing frequency was installed, and visualization of single water droplet was conducted with high resolution ICCD and CCD camera. At the same time, atomization and deformation characteristics of single water droplet was studied in terms of normalized droplet diameter($d/d_0$), droplet diameter(d) variation and droplet volume(V) variation under different ultrasonic frequency(f) conditions. It was revealed that increase of ultrasonic frequency reduces the droplet diameter. Therefore, it is able to levitate with low sound pressure level. It also induces the wide oscillation range, large diameter and volume variation of water droplet. In conclusion, the increase of ultrasonic frequency(f) can enhance the atomization performance of single water droplet.

A Study on Water Droplet Lens Effect of UV Laser Micromachining Process (UV 레이저 미세 가공공정에서의 물 액적 렌즈 효과에 관한 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.773-777
    • /
    • 2012
  • Recently UV laser micromachining processes is widely introduced to meet the needs of advanced components of IT, BT and ET industries. Due to the characteristics of non-contact and high-speed laser processing, UV laser micromachining is applied to manufacture very thin substrate such as polymer, metals and composite. These minimum line width obtained by UV laser micromachining is generally determined from laser wavelength, optical lens and its numerical aperture. In this paper we will show the lens effect of water droplet on the surface of workpiece to reduce the line width when UV laser light is irradiated and focused through the water droplet. Because of the refraction effect generated by the semi-spherical or spherical shape of water droplet, we can find smaller line width. And water droplet could not only protect thermal deformation, but also carry away burr around micro dent. Firstly fundamental theory of minimum line width was derived from relationship between the geometry of water droplet and laser light trace, and then experimental and simulation results will be finally compared to verify the effectiveness of water droplet lens effect of UV laser micromachining process.

The Effect of the Deformation on the Sensitivity of a Flexible PDMS Membrane Sensor to Measure the Impact Force of a Water Droplet (액적의 충격력 측정을 위한 유연 멤브레인 센서의 PDMS 변형에 의한 민감도의 영향)

  • Kang, Dong Kwan;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • This study investigates the effect of the deformation on the sensitivity of a flexible polydimethylsiloxane (PDMS) membrane sensor. A PDMS membrane sensor was developed to measure the impact force of a water droplet using a silver nanowire (AgNW). The initial deformation of the membrane was confirmed with the application of a tensile force (i.e., tension) and fixing force (i.e., compressive force) at the gripers, which affects the sensitivity. The experimental results show that as the tension applied to the membrane increased, the sensitivity of the sensor decreased. The initial electrical resistance increased as the fixing force increased, while the sensitivity of the sensor decreased as the initial resistance increased. The movement of the membrane due to the impact force of the water droplet was observed with a high-speed camera, and was correlated with the measured sensor signal. The analysis of the motion of the membrane and droplets after collision confirmed the periodic movement of not only the membrane but also the change in the height of the droplet.

Jumping of a Droplet on a Superhydrophobic Surface in AC Electrowetting (AC 전기습윤을 이용한 초발수 표면에서의 액적의 점프)

  • Lee, Seung-Jun;Oh, Jung-Min;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2501-2504
    • /
    • 2008
  • We found that a droplet placed on a superhydrophobic surface jumps upward when we controlled the electrical wetting tension appropriately by applying AC voltage. We investigated how the surface deformation and jumping phenomenon of a droplet are affected by applied frequency under constant voltage. We found that a droplet jumps up continuously at a resonance frequency.

  • PDF

Effects of Convective Velocity and Ambient Pressure on the Characteristics of Heptane Droplet Vaporization in Supercritical Environments (초임계상태에서 주위 유동 속도와 압력 변화에 따른 헵탄 액적의 기화 특성)

  • Lim, Jong-Hyuk;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.71-78
    • /
    • 2005
  • The vaporization characteristics of a liquid heptane droplet in a supercritical nitrogen flow is numerically analyzed. The present model can account for real gas effects, liquid-phase internal circulation, variable thermodynamic properties and high-pressure effects. Time marching method with preconditioning scheme is employed to handle the low Mach number flows in dense heptane droplet region. Computations are made for the wide range of convective velocity and ambient pressure. Numerical results indicate that the droplet deformation becomes stronger by increasing the Reynolds number and it becomes relatively weak by increasing the pressure.

Shape Oscillation and Mode Characteristic of Droplet on Vibrating Flat Surface (진동 평판 위 액적의 형상 진동 변화 및 모드 특성)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.489-494
    • /
    • 2013
  • This study aims to understand the mode characteristics of a droplet under a periodic forced vibration. To predict the resonance frequency of a droplet, theoretical and experimental approaches were employed. A high-speed camera was used to capture the various deformation characteristics of a droplet-mode shape, detachment, separated secondary droplet, and skewed deformation. The comparison between the theoretical and the experimental approaches shows a ~10% discrepancy in the prediction of the resonance frequency, which appears to be caused by the effect of contact line friction, nonlinear wall adhesion, and experimental uncertainty. Owing to contact-line pinning and smaller amplitude, the droplet shape becomes symmetric and the size of each lobe at the resonance frequency exceeds that at the neighbor, which is out of resonance.