• Title/Summary/Keyword: Drosophila immunity

Search Result 12, Processing Time 0.023 seconds

Overview of Innate Immunity in Drosophila

  • Kim, Tae-Il;Kim, Young-Joon
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2005
  • Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.

CLIP-domain serine proteases in Drosophila innate immunity

  • Jang, In-Hwan;Nam, Hyuck-Jin;Lee, Won-Jae
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.102-107
    • /
    • 2008
  • Extracellular proteases play an important role in a wide range of host physiological events, such as food digestion, extracellular matrix degradation, coagulation and immunity. Among the large extracellular protease family, serine proteases that contain a "paper clip"-like domain and are therefore referred to as CLIP-domain serine protease (clip-SP), have been found to be involved in unique biological processes, such as immunity and development. Despite the increasing amount of biochemical information available regarding the structure and function of clip-SPs, their in vivo physiological significance is not well known due to a lack of genetic studies. Recently, Drosophila has been shown to be a powerful genetic model system for the dissection of biological functions of the clip-SPs at the organism level. Here, the current knowledge regarding Drosophila clip-SPs has been summarized and future research directions to evaluate the role that clip-SPs play in Drosophila immunity are discussed.

Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila

  • Koranteng, Ferdinand;Cho, Bumsik;Shim, Jiwon
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.101-108
    • /
    • 2022
  • Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.

The Role of Lozenge in Drosophila Hematopoiesis

  • Koranteng, Ferdinand;Cha, Nuri;Shin, Mingyu;Shim, Jiwon
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.114-120
    • /
    • 2020
  • Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.

Drosophila melanogaster Is Susceptible to Vibrio cholerae Infection

  • Park, Shin-Young;Heo, Yun-Jeong;Kim, Kun-Soo;Cho, You-Hee
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.409-415
    • /
    • 2005
  • Infection of Drosophila melanogaster adults with 6 Vibrio species revealed that V. cholerae was lethal (100% mortality) within 20 h as a result of systemic infection. Avirulent infection by V. vulnificus restricted the subsequent virulent infection by V. cholerae. The immediate transcription of antimicrobial peptides (AMPs), most notably Attacin A, was delayed in V. cholerae infection compared to V. vulnificus infection. Ectopic expression of Attacin A and Metchnikowin enhanced the survival of D. melanogaster upon V. cholerae infection. These results suggest that AMPs are important in the response to infections by Vibrio species and that the signaling pathways governing their expression may be targeted by V. cholerae virulence factors to elude the innate immunity of Drosophila.

Involvement of Pro-Phenoloxidase 3 in Lamellocyte-Meidated Spontaneous Melanization in Drosophila

  • Nam, Hyuck-Jin;Jang, In-Hwan;Asano, Tsunaki;Lee, Won-Jae
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.606-610
    • /
    • 2008
  • Phenoloxidase (PO), a melanin-forming enzyme around the foreign bodies, is an important component of the host defense system in invertebrates. Pro-PO is the enzymatically inactive zymogen form of PO. In the Drosophila genome, three Pro-PO isoforms have been identified to date. These include Pro-PO1 and 2, which are primarily expressed in crystal cells, and Pro-PO3, which is predominantly found in the lamellocytes. In this study, we demonstrated that Drosophila Pro-PO3, but not Pro-PO1 or 2, is enzymatically active in its zymogen form. These findings were evidenced by spectacular melanin forming capacities of various cells and tissues that overexpressed these pro-enzymes. Furthermore, the melanization phenotype observed in the lamellocyte-enriched $hop^{Tum-l}$ mutant was drastically reduced in the absence of PPO3, indicating that PPO3 plays a major role in the lamellocyte-mediated spontaneous melanization process. Taken together, these findings indicate that the biochemical properties, activation mode and in vivo role of Pro-PO3 are likely distinct from those of the other two Pro-PO enzymes involved in Drosophila physiology.

Microarray Analysis of the Gene Expression Profiles of SL2 Cells Stimulated by LPS/PGN and Curdlan

  • Jin, Li Hua;Choi, Jung Kyoon;Cho, Hwan Sung;Shim, Jaewon;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.553-558
    • /
    • 2008
  • Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. In order to identify new Drosophila melanogaster genes involved in the immune response, we performed gene expression profiling of Drosophila SL2 cells stimulated with bacterial (LPS/PGN) or fungal (curdlan) components using a cDNA microarray that contained 5,405 Drosophila cDNAs. We found that some genes were similarly regulated by LPS/PGN and curdlan. However, a large number, belonging to the functional classes of cell organization, development, signal transduction, morphogenesis, cell cycle, and DNA replication, displayed significant differences in their transcription profiles between the two treatments, demonstrating that bacterial and fungal components induce different immune response even in an in vitro cell system.

Recent Advances in the Innate Immunity of Invertebrate Animals

  • Iwanaga, Sadaaki;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.128-150
    • /
    • 2005
  • Invertebrate animals, which lack adaptive immune systems, have developed other systems of biological host defense, so called innate immunity, that respond to common antigens on the cell surfaces of potential pathogens. During the past two decades, the molecular structures and functions of various defense components that participated in innate immune systems have been established in Arthropoda, such as, insects, the horseshoe crab, freshwater crayfish, and the protochordata ascidian. These defense molecules include phenoloxidases, clotting factors, complement factors, lectins, protease inhibitors, antimicrobial peptides, Toll receptors, and other humoral factors found mainly in hemolymph plasma and hemocytes. These components, which together compose the innate immune system, defend invertebrate from invading bacterial, fungal, and viral pathogens. This review describes the present status of our knowledge concerning such defensive molecules in invertebrates.

Transcriptional Regulation of the Methuselah Gene by Dorsal Protein in Drosophila melanogaster

  • Kim, Hyukmin;Kim, Jinsu;Lee, Yoonsoo;Yang, Jaeyeon;Han, Kyuhyung
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.261-268
    • /
    • 2006
  • The Drosophila methuselah (mth) mutant has an approximately 35 percent increase in average lifespan, and enhanced resistance to various forms of stress, including starvation, high temperature, and dietary paraquat. To examine the transcriptional regulation of mth, we used luciferase assays employing Drosophila S2 cells. Two positive control elements were found at -542 ~ -272 (PE1) and +28 ~ +217 (PE2), where putative binding sites for transcription factors including Dorsal (Dl) were identified. Cotransfection of a Dl expression plasmid with a mth-luciferase reporter plasmid resulted in decreased reporter activity. PE1 and PE2, the minimal elements for strong promoter activity, were required for maximal repression by Dl protein. The N-terminal Rel homology domain (RHD) of Dl was not sufficient for repression of mth. We demonstrated by chromatin affinity precipitation (ChAP) assays in S2 cells that Dl bound to the putative PE1 binding site. Unexpectedly, semi-quantitative RT-PCR analysis revealed that the level of mth transcripts was reduced in dl flies. However, the in vivo result support the view that mth expression is regulated by dl, since it is well known that Dl functions as both a transcriptional activator and repressor depending on what other transcription factors are present. These findings suggest that both innate immunity and resistance to stress are controlled by Dl protein.