• Title/Summary/Keyword: Dual oxygen sensor

Search Result 3, Processing Time 0.023 seconds

A STUDY ON A CATALYTIC CONVERTER OBD BEFORE LIGHT-OFF

  • Yun, Seung-Won;Son, Geon-Seog;Lee, Kwi-Young
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • Increasingly stringent emission regulations of EU and CARB (California Air resource Board) require mandatory OBD (On Board Diagnostics) far the catalytic converters of a vehicle. It demands that MIL(Malfunction Indication Light) should be tuned on to inform the driver of catalytic converter failures. Currently dual oxygen sensor method Is widely used for the converter OBD. However, since it works only alter converter light-off, it has a serious limitation when applied to TLEV or more stringent emission regulations where more than 85% of total emission is coming out before converter light-off. In addition, a recent development in catalyst material. coating technology and additive catalysts leads to a much improved OSC (Oxygen Storage Capacity) after converter light-off, current methods are very difficult to determine levels of converter aging. Therefore, it is desired to develop an OSC detecting method before converter light-off to diagnose converter failures with higher reliability. In this study, OSCs of converters are measured by an absolute measuring method and a dynamic measuring method, and some of fundamental ideas are suggested about converter OBD before converter light-off. The converters are aged with two different aging methods; those are a furnace aging and an engine bench aging: to represent aging conditions in actual field applications. Dual oxygen sensor method at the lower temperature than light-off is also studied at a model gas bench with the converters. It is fecund that there is a certain point in temperature lower than light-off where difference due to aging level becomes maximum, thus a proper dynamic method to effectively monitor catalytic converters could be implemented fur the range lower than light-off temperatures. With this result, the aging level of converters is examined at an engine bench.

A Study on Converter OBD (컨버터 OBD에 대한 연구)

  • 손건석;윤승원;김대중;전상진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.202-209
    • /
    • 2001
  • As a part of stringent emission regulations, OBD on a converter is requested by EU and CARB. It demands that MIL is light-on to inform the failure to the driver when the converter is failed in its function. Usually dual oxygen sensor method is used for converter OBD. For this, detail methods, like amplitude ratio, time delay and frequency ratio methods are adapted for vehicle application. Actually, the cars produced later than MY94 for US market are using one of these methods. In this study, OSCs of converters are investigated with an absolute measuring method. The converters are aged with a furnace aging, an engine bench aging and vehicle aging method to represent various aging condition in field applications. An OBD index that is used for TLEVs regulation is also investigated to find a relation between two parameters. The relations of these parameters with THC emission on vehicle are evaluated.

  • PDF

Effect of Mutations of Five Conserved Histidine Residues in the Catalytic Subunit of the cbb3 Cytochrome c Oxidase on its Function

  • Oh Jeong-Il
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.284-292
    • /
    • 2006
  • The cbb3 cytochrome c oxidase has the dual function as a terminal oxidase and oxygen sensor in the photosynthetic bacterium, Rhodobacter sphaeroides. The cbb3 oxidase forms a signal transduction pathway together with the PrrBA two-component system that controls photosynthesis gene expression in response to changes in oxygen tension in the environment. Under aerobic conditions the cbb3 oxidase generates an inhibitory signal, which shifts the equilibrium of PrrB kinase/phosphatase activities towards the phosphatase mode. Photosynthesis genes are thereby turned off under aerobic conditions. The catalytic subunit (CcoN) of the R. sphaeroides cbb3 oxidase contains five histidine residues (H2l4, B233, H303, H320, and H444) that are conserved in all CcoN subunits of the cbb3 oxidase, but not in the catalytic subunits of other members of copper-heme superfamily oxidases. H214A mutation of CcoN affected neither catalytic activity nor sensory (signaling) function of the cbb3 oxidase, whereas H320A mutation led to almost complete loss of both catalytic activity and sensory function of the cbb3 oxidase. H233V and H444A mutations brought about the partial loss of catalytic activity and sensory function of the cbb3 oxidase. Interestingly, the H303A mutant form of the cbb3 oxidase retains the catalytic function as a cytochrome c oxidase as compared to the wild-type oxidase, while it is defective in signaling function as an oxygen sensor. H303 appears to be implicated in either signal sensing or generation of the inhibitory signal to the PrrBA two-component system.