• Title/Summary/Keyword: Ductility index

Search Result 131, Processing Time 0.02 seconds

New approach for Ductility analysis of partially prestressed concrete girders

  • Radnic, Jure;Markic, Radoslav;Grgic, Nikola;Cubela, Dragan
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • Expressions for the calculation of ductility index for concrete girders with different ratios of prestressed and classical reinforcement were proposed using load-displacement, load-strain and load-curvature relation. The results of previous experimental static tests of several large-scale concrete girders with different ratio of prestressed and classical reinforcement are briefly presented. Using the proposed expressions, various ductility index of tested girders were calculated and discussed. It was concluded that the ductility of girders decreases approximately linearly by increasing the degree of prestressing. The study presents an expression for the calculation of the average ductility index of classical and prestressed reinforced concrete girders, which are similar to the analysed experimental test girders.

Analytical Study on Ductility Index of Reinforced Concrete Flexural Members (철근 콘크리트 휨부재의 연성지수에 관한 해석적 연구)

  • Lee, Jae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.391-402
    • /
    • 1994
  • One of the most important design concept for reinforced concrete structures is to achieve a ductile failure mode, and also moment redistribution for economic design is possible in case that adequate ductility is provided. Flexural ductility index is, therefore, used as a reference for possibility of moment redistribution as well as for prediction of flexural behavior of designed R.C. structures. Ductility index equations, however, provide approximate values due to the linear concrete compressive stress assumption at the tension steel yielding state. Theoretically more exact ductility index is calculated by a numerical analysis with the realistic stress-strain curves for concrete and steel to be compared with the result from tire ductility index equations. Variation of ductility index for the selected variables and the reasonable maximum tension steel ratio for doubly reinforced section are investigated. A moment-curvature curve model is also proposed for future research on moment redistribution.

  • PDF

Minimum reinforcement and ductility index of lightly reinforced concrete beams

  • Fantilli, Alessandro P.;Chiaia, Bernardino;Gorino, Andrea
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1175-1194
    • /
    • 2016
  • Nonlinear models, capable of taking into account all the phenomena involved in the cracking and in the failure of lightly reinforced concrete beams, are nowadays available for a rigorous calculation of the minimum reinforcement. To simplify the current approaches, a new procedure is proposed in this paper. Specifically, the ductility index, which is lower than zero for under-reinforced concrete beams in bending, is introduced. The results of a general model, as well as the data measured in several tests, reveal the existence of two linear relationships between ductility index, crack width, and the amount of steel reinforcement. The above relationships can be applied to a wide range of lightly reinforced concrete beams, regardless of the geometrical dimensions and of the mechanical properties of materials. Accordingly, if only a few tests are combined with this linear relationships, a new design-by-testing procedure can be used to calculate the minimum reinforcement, which guarantees both the control of cracking in service and the ductility at failure.

Flexural Behavior of High-strength Concrete Beams of 90 MPa According to Curing Temperature (양생온도에 따른 90 MPa 수준의 고강도 철근 콘크리트 보의 휨거동)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.134-140
    • /
    • 2017
  • In this study, the flexural behavior of high strength concrete members with different curing condition of 90 MPa of compressive strength was investigated. Experimental parameters included normal and low temperature curing conditions, tensile steel amount and concrete compressive strength. 8 beam members were fabricated and flexural tests were carried out. Crack spacing, load-deflection relation, load-strain relation and ductility index were determined. Experimental results show that as the amount of rebar increases, the number of cracks increases and the crack spacing decreases. The higher the concrete strength, the smaller the number of cracks, but the effect is significantly smaller than the amount of rebar. As a result of comparison with the proposed average crack spacing in the design criteria, the experimental results are slightly larger than the results of the proposed formula, but the proposed formula does not reflect the concrete strength and curing conditions. The ductility index of normal temperature cured members was 3.36~6.74 and the ductility index of low temperature cured members was 1.51~2.82. The behavior of low temperature cured members was found to be lower than that of normal temperature cured members. As a result of comparing the ductility index with the existing studies similar to the experimental members, the ductility index of the high strength concrete member was larger than the ductility index of the ordinary strength concrete of the previous study. Further research is needed to understand more specific results.

An Application of Strength Reduction Factors to Reinforced Concrete Columns considering Ductility (연성을 고려한 철근콘크리트 기둥의 강도감소계수 적용에 관한 연구)

  • 손혁수;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.147-156
    • /
    • 1999
  • Current design code states that the strength reduction factor shall be permitted to be increased linearly from that for axial compression to that for flexure as the design axial load strength $\Phi$cPn decrease from 0.1fckAg to zero. Since this empirically adopted axial load level of $\Phi$cPn=0.1fckAg considers only sectional area and concrete strength, the other variables such as steel ratio, steel yielding strength, and steel arrangement can not be considered. This research is performed to investigate the consistency and the rationality of the code requirement for determination of column design strength. A nonlinear axial force-moment-curvature analysis was conducted in order to investigate the ductility of reinforced concrete column sections. As the result of ductility analysis, it was found that the ductility at the axial force of $\Phi$cPn=0.1fckAg represented a lock of consistency for the various variable contained sections. Therefore, a more reasonable application method of strength reduction factor is proposed, that is based on the strain ductility index.

An Experimental Study on the Flexural Strength and Ductility Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 휨강도 및 연성능력에 관한 실험적 연구)

  • 김용부;고만영;김상우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.501-506
    • /
    • 1998
  • This paper is an experimental study on the flexural strength and ductility capacity of reinforced high performance concrete beams with the concrete which has compressive strength of 600~700kg/$\textrm{cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. Total 8 beams with different tensile reinforcement ratio and pattern of loading were tested. Form the results of reinforced high performance concrete beams, the equivalent stress block parameters proposed by MacGregor et al. or New Zealand code are recommended to use. Also, an extreme fiber concrete compressive strain of reinforced high performance concrete beams are distributed 0.0033~0.0048. In reinforced high performance concrete beams, reinforcement ratio in order to insure curvature ductility index 2 and 4 propose by ACI code should be less than those of reinforced normal strength concrete beams.

  • PDF

Cyclic flexural behavior of RC members reinforced with Forta-Ferro and Polyvinyl Alcohol fibers

  • Hamed Rajabzadeh Gatabi;Habib Akbarzadeh Bengar;Murude Celikag
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.333-346
    • /
    • 2023
  • This paper presents findings from an experimental study that was focused on evaluating the use of Forta-Ferro (FF) and Polyvinyl Alcohol (PVA) fibers on the response of moderate and special ductility beams under load cycles. For this reason, eight full-scale specimens, identical in geometry, were subjected to gradual cyclic loading. The specimens included two plain concrete beams with medium and special ductility, three beams with medium ductility and stirrup spacing of one-quarter the effective depth (d/4) and three beams with special ductility, and stirrup spacing of one-half the effective depth (d/2), strengthened with FF and PVA fibers separately. The use of fibers was aimed at reducing the amount of shear reinforcement in flexural members. Here, the variation of parameters including the maximum strength, ultimate strength, stiffness, ductility, damage index, energy dissipation, and equivalent damping was studied. Utilizing FF and PVA fibers improved the performance in beams with moderate ductility when compared to those beams with special ductility. Therefore, in special ductility beams, fibers can be used instead of crossties and in moderate ductility beams, fibers can be added to reduce the ratio of shear reinforcement. Furthermore, increasing the stirrup spacing in the moderate ductility beams from d/4 to d/2 and adding 0.6% FF or 1.5% PVA fibers resulted in behavior similar to those of the moderate ductility beam.

Ductility Evaluation of Heavyweight Concrete Shear Walls with Wire Ropes as a Lateral Reinforcement (와이어로프로 횡보강된 고중량콘크리트 전단벽의 연성평가)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • This study examined the feasibility of wire ropes as lateral reinforcement at the boundary element of heavyweight concrete shear walls. The spacing of the wire ropes varied from 60 mm to 120 mm at an interval of 30 mm, which produces the volumetric index of the lateral reinforcement of 0.126~0.234. The wire ropes were applied as a external hoop and/or internal cross-tie. Five shear wall specimens were tested to failure under constant axial load and cyclic lateral loads. Test results showed that with the increase of the volumetric index of the lateral reinforcement, the ductility of shear walls tended to increase, whereas the variation of flexural capacity of walls was minimal. The flexural capacity of shear walls tested was slightly higher than predictions determined from ACI 318-11 procedure. The displacement ductility ratio of shear walls with wire ropes was higher than that of shear wall with the conventional mild bar at the same the volumetric index of the lateral reinforcement. In particular, the shear walls with wire rope index of 0.233 achieved the curvature ductility ratio of more than 16 required for high-ductility design.

Seismic Behavior of Steel Moment Connections with Different Structural Characteristics (철골 모멘트 연결부의 구조특성에 따른 지진 거동 연구)

  • Joh, Chang-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2002
  • The seismic behaviors of steel moment connections with different structural characteristics are investigated. The rupture index, which represents the fracture potential, is adopted to study the effect of concrete slab and the relative strength between the coin the beam, and Panel zone on the ductility of connections. The results show that the presence of slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on the beam but also on the column and panel zone. Therefore, the detrimental slab effects and the relative strength should be considered in the seismic design of the connection.

Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods

  • Qu, Xiushu;Chen, Zhihua;Sun, Guojun
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • Axial compression tests have been carried out on 18 rectangular concrete-filled cold-formed steel tubular (CFST) columns with the aim of investigating the axial behaviour of rectangular CFST columns under different loading methods (steel loaded-first and full-section loaded methods). The influence of different loading methods on the ultimate strength of the specimens was compared and the development of Poisson's Ratio as it responds to an increasing load was reported and analysed. Then, the relationship between the constraining factor and the strength index, and the relationship between the constraining factor and ductility index of the specimens, were both discussed. Furthermore, the test results of the full-section loaded specimens were compared with five international code predicted values, and an equation was derived to predict the axial carrying capacity for rectangular CFST columns with a steel loaded-first loading method.