• 제목/요약/키워드: Dural ring

검색결과 4건 처리시간 0.022초

Determination of Aneurysmal Location with 3 Dimension-Computed Tomographic Angiography in the Microsurgery of Paraclinoid Aneurysms

  • Kim, Min-Young;Chung, Seung-Young;Kim, Seung-Min;Park, Moon-Sun;Jung, Sung-Sam
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권1호
    • /
    • pp.35-41
    • /
    • 2007
  • Objective : Determining the location of paraclinoid aneurysms for microsurgery is important for selecting treatment options, especially when deciding on the release of the dural ring in direct clipping. We examined the reliability of using the optic strut as an anatomical landmark for evaluating the location of paraclinoid aneurysms. Methods : Cadaveric dissection was performed to establish the relationship of the optic strut to the dural ring. Results from these anatomic studies were compared with the three-demensional computed tomographic angiographic [3D-CTA] findings of nine patients with ten paraclinoid aneurysms between May 2004 and October 2005. These, 3D-CTA results were then compared with intraoperative findings. Results : The inferior boundary of the optic strut accurately localized the point at the proximal dural ring in cadaveric study. The optic strut and its relationship to the aneurysms was well observed on the multiplanar reformats of 3D-CTA. During microsurgery, nine of ten aneurysms were verified to arise from distal to the upper surface of the optic strut. Two aneurysms that had arisen between the inferior and superior boundary of the optic strut were observed to lie within the carotid cave. One aneurysm which had arisen at the inferior boundary of the optic strut and directed inferiorly was observed to lie within the cavernous sinus just after the release of the proximal ring. Conclusion : The optic strut, as identified with multiplanar reformats of 3D-CTA, provided a reliable anatomic landmark for the proximal rings and an important information about the location of aneurysms around the anterior clinoid process (ACP). Therefore, 3D-CTA and the optic strut could become an invaluable tool and a landmark in the assessment of the location of paraclinoid aneurysms for microsurgery.

Distinction between Intradural and Extradural Aneurysms Involving the Paraclinoid Internal Carotid Artery with T2-Weighted Three-Dimensional Fast Spin-Echo Magnetic Resonance Imaging

  • Lee, Nam;Jung, Jin-Young;Huh, Seung-Kon;Kim, Dong-Joon;Kim, Dong-Ik;Kim, Jin-Na
    • Journal of Korean Neurosurgical Society
    • /
    • 제47권6호
    • /
    • pp.437-441
    • /
    • 2010
  • Objective : The precise intra- vs. extradural localization of aneurysms involving the paraclinoid internal carotid artery is critical for the evaluation of patients being considered for aneurysm surgery. The purpose of this study was to investigate the clinical usefulness of T2-weighted threedimensional (3-D) fast spin-echo (FSE) magnetic resonance (MR) imaging in the evaluation of unruptured paraclinoid aneurysms. Methods : Twenty-eight patients with unruptured cerebral aneurysms in their paraclinoid regions were prospectively evaluated using a T2- weighted 3-D FSE MR imaging technique with oblique coronal sections. The MR images were assessed for the location of the cerebral aneurysm in relation to the dural ring and other surrounding anatomic compartments, and were also compared with the surgical or angiographic findings. Results : All 28 aneurysms were identified by T2-weighted 3D FSE MR imaging, which showed the precise anatomic relationships in regards to the subarachnoid space and the surrounding anatomic structures. Consequently, 13 aneurysms were determined to be intradural and the other 15 were deemed extradural as they were confined to the cavernous sinus. Of the 13 aneurysms with intradural locations, three superior hypophyseal artery aneurysms were found to be situated intradurally upon operation. Conclusion : High-resolution T2-weighted 3-D FSE MR imaging is capable of confirming whether a cerebral aneurysm at the paraclinoid region is intradural or extradural, because of the MR imaging's high spatial resolution. The images may help in identifying patients with intradural aneurysms who require treatment, and they also can provide valuable information in the treatment plan for paraclinoid aneurysms.

Internal Carotid Artery Reconstruction Using Multiple Fenestrated Clips for Complete Occlusion of Large Paraclinoid Aneurysms

  • Lee, Sang Kook;Kim, Jae Min
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권6호
    • /
    • pp.477-483
    • /
    • 2013
  • Objective : Although surgical techniques for clipping paraclinoid aneurysms have evolved significantly in recent times, direct microsurgical clipping of large and giant paraclinoid aneurysms remains a formidable surgical challenge. We review here our surgical experiences in direct surgical clipping of large and giant paraclinoid aneurysms, especially in dealing with anterior clinoidectomy, distal dural ring resection, optic canal unroofing, clipping techniques, and surgical complications. Methods : Between September 2001 and February 2012, we directly obliterated ten large and giant paraclinoid aneurysms. In all cases, tailored orbito-zygomatic craniotomies with extradural and/or intradural clinoidectomy were performed. The efficacy of surgical clipping was evaluated with postoperative digital subtraction angiography and computed tomographic angiography. Results : Of the ten cases reported, five each were of ruptured and unruptured aneurysms. Five aneurysms occurred in the carotid cave, two in the superior hypophyseal artery, two in the intracavernous, and one in the posterior wall. The mean diameter of the aneurysms sac was 18.8 mm in the greatest dimension. All large and giant paraclinoid aneurysms were obliterated with direct neck clipping without bypass. With the exception of the one intracavenous aneurysm, all large and giant paraclinoid aneurysms were occluded completely. Conclusion : The key features of successful surgical clipping of large and giant paraclinoid aneurysms include enhancing exposure of proximal neck of aneurysms, establishing proximal control, and completely obliterating aneurysms with minimal manipulation of the optic nerve. Our results suggest that internal carotid artery reconstruction using multiple fenestrated clips without bypass may potentially achieve complete occlusion of large paraclinoid aneurysms.

Measurement of Critical Structures around Paraclinoidal Area : A Cadaveric Morphometric Study

  • Lee, Hyun-Woo;Park, Hyun-Seok;Yoo, Ki-Soo;Kim, Ki-Uk;Song, Young-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권1호
    • /
    • pp.14-18
    • /
    • 2013
  • Objective : Although removal of the anterior clinoid process (ACP) is essential surgical technique, studies about quantitative measurements of the space broadening by the anterior clinoidectomy are rare. The purposes of this study are to investigate the dimension of the ACP, to quantify the improved exposure of the parasellar space after extradural anterior clinoidectomy and to measure the correlation of each structure around the paraclinoidal area. Methods : Eleven formalin-fixed Korean adult cadaveric heads were used and frontotemporal craniotomies were done bilaterally. The length of C6 segment of the internal carotid artery on its lateral and medial side and optic nerve length were checked before and after anterior clinoidectomy. The basal width and height of the ACP were measured. The relationships among the paraclinoidal structures were assessed. The origin and projection of the ophthalmic artery (OA) were investigated. Results : The mean values of intradural basal width and height of the ACP were 10.82 mm and 7.61 mm respectively. The mean length of the C6 lateral and medial side increased 49%. The mean length of optic nerve increased 97%. At the parasellar area, the lengths from the optic strut to the falciform liament, distal dural ring, origin of OA were 6.69 mm, 9.36 mm and 5.99 mm, respectively. The distance between CN III and IV was 11.06 mm. Conclusion : With the removal of ACP, exposure of the C6 segments and optic nerve can expand 49% and 97%, respectively. This technique should be among a surgeon's essential skills for treating lesions around the parasellar area.