• Title/Summary/Keyword: Dynamic Cutting Model

Search Result 71, Processing Time 0.024 seconds

An Analysis of Dynamic Cutting Force Model for Face Milling Using Modified Autoregressive Vector Model (자기회귀 벡터모델을 이용한 정면밀링의 동절삭력 모델해석)

  • 백대균;김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2949-2961
    • /
    • 1993
  • Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.

The Prediction of Cutting Force and Surface Topography by Dynamic Force Model in End Milling (엔드밀 가공시 동적 절삭력 모델에 의한 절삭력 및 표면형상 예측)

  • 이기용;강명창;김정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.38-45
    • /
    • 1997
  • A new dynamic model for the cutting process inb the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model which uses instantaneous specific cutting force, inclueds both regenerative effect and penetration effect, The model is verified through comparisons of model predicted cutting force with measured cutting force obtained from machining experiments.

  • PDF

Development of Dynamic Cutting Force Model by Mean Specific Cutting Pressure in Face Milling Process (평균 비절삭저항을 이용한 정면 밀리의 동절삭력 모델 개발)

  • Lee, Byung-Cheol;Baek, Dae-Kyun;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.39-52
    • /
    • 1995
  • In order to design and improve a new machine tool, there is a need for a better understanding of the dynamic cutting force. In this paper, the computer programs were developed to predict the dynamic cutting force by the mean specific cutting pressure in the face milling process. The simulated cutiing forces in X, Y, Z directions resulted from the developed dynamic cutting force model are compared with the measured cutiing forces in the time and frequency domains. The simulated cutting force model have a good agreement with the measured forces in comparison with those resulted from the existing cutting force model.

  • PDF

Dynamic Model in Ball End Milling of Inclined Surface (볼 엔드밀 경사면 가공의 동적 모델)

  • Kim Seung-Yoon;Kim Byung-Hee;Chu Chong-Nam;Lee Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.39-46
    • /
    • 2006
  • In this work a dynamic cutting force model in ball end milling of inclined surface is introduced. To represent the complex cutting geometry in ball end milling of inclined surface, workpiece is modeled with Z-map method and cutting edges are divided into finite cutting edge elements. As tool rotates and vibrates, a finite cutting edge element makes two triangular sub-patches. Using the number of nodes in workpiece which are in the interior of sub-patches, instant average uncut chip thickness is derived. Instant dynamic cutting forces are computed with the chip thickness and cutting coefficients. The deformation of cutting tool induced by cutting farces is also computed. With iterative computation of these procedures, a dynamic cutting force model is generated. The model is verified with several experiments.

금형강의 앤드밀 가공시 동적모델에 의한 절삭력 예측

  • 이기용;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.49-54
    • /
    • 1994
  • A dynamic model for the cutting process in the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model, which uses instantaneous specific cutting force, includes both regenerative effect and penetration effect. The model is verified through comparisons of model predicted cutting force with measured cutting forces obtained from machining experiments.

  • PDF

The chatter vibration in metal cutting using the low stiffness tool (저강성 공구를 이용한 절삭에서의 채터 진동)

  • 김정석;이병호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.424-432
    • /
    • 1989
  • A mathematical model is developed for determination of the dynamic cutting force from static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The proposed model is verified by the chatter stability charts. A good agreement was shown between the stability limits predicted by the theory and the critical width of cut determined by experiments. The static cutting coefficient dominates high speed chatter stability, while the dynamic cutting coefficient dominates low speed chatter stability.

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Development of a Cutting Force Monitoring System for a CNC Lathe (CNC 선반에서의 절삭력 감지 시스템 개발)

  • Heo, Geon-Su;Lee, Gang-Gyu;Kim, Jae-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.219-225
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

A Study about Dynamic Behavior of the Face Milling Cutter to Minimize Resultant Cutting Force (최소 절삭력형 정면밀링 커터의 동적거동에 관한 연구)

  • Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • On face milling operation a newly optimal tool, which can minimize the resultant cutting forces resulted from the cutting force model, was designed and manufactrued. Cutting experiments using the new and conventional tools were carried out and the cutting forces resulted from those tools were analyzed in time and frequency domains. The performance of the optimized cutter was tested through the dynamic cutting forces resulted form the newly designed tool are much reduced in comparision with those from the conventional tool. By reducing the dynamic cutting force fluctuations, machine tool vibrations can be reduced, and stable cutting operation can be carried out.

  • PDF

A modeling of dynamic cutting force and analysis of stability in chatter vibration (채터진동에서의 동적 절삭력의 모델링과 안정성 해석)

  • Kim, Jeong-Suk;Kang, Myeong-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1993
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is presented in order to predict the dynamic cutting force from the static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The stability analysis is carried out by a two degree of freedom system. The chatter experiments are conducted by exciting the cutting tool with an impact hammer during an orthogonal cutting. A good agreement is shown between the stability limits predicted by theory and the critical width of cut determined by experiments.

  • PDF