• Title/Summary/Keyword: Dynamic Measurement

Search Result 1,871, Processing Time 0.03 seconds

Effects of a Teaching Process using Dynamic Assessment : Young Children's Measurement Ability (참조물을 활용한 역동적평가의 교수과정이 유아의 측정능력에 미치는 영향)

  • Ko, Eun-Mi;Jung, Myung-Sook;Hwang, Hae-Ik
    • Korean Journal of Child Studies
    • /
    • v.29 no.1
    • /
    • pp.275-292
    • /
    • 2008
  • This study investigated the effects of a teaching process using dynamic assessment for a unit on young children's measurement ability. Subjects were 45 5-year-old children in a kindergarten in Busan. The instrument was the Dynamic Assessment Tools for Young Children's Measurement Ability (Hwang & Ko, 2(07). Assessment consisted of four steps: pre-test, learning, transfer, post-test. Results were that at post-test, there were significant differences in scores of measurement ability between the dynamic assessment and control groups. In the dynamic assessment group there was significant improvement in length, width and weight between pre- and post-tests and there were significant shifts of measurement strategies and measurement errors between the pre- and post-tests.

  • PDF

Development of automatic measurement system for dynamic respose time of pneumatic solenoid valve (공압밸브의 동적응답 특성측정 자동화 시스템 개발)

  • 강보식;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.974-978
    • /
    • 1991
  • Electro-pneumatic valve is an electro-mechanical device which converts electric signal into pneumatic flow mu or pressure. A measurement of dynamic response time is very important to evaluate valve performance. Dynamic response time of electro-pneumatic valve has a variation accordance with valve types, operating way and test standard. In this study, automatic measurement system of dynamic response time is composed based on test condition of dynamic response time test standard(CETOP, JIS). Also, in this study test pressure variation characteristics accordance with variation of solenoid excitation power, and we developed dynamic response measurement system enable to compare of and analyze these two characteristics.

  • PDF

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Dynamic Range Reconstruction Algorithm for Smart Phone Camera Pulse Measurement Robust to Light Condition (조명 조건에 강건한 스마트폰 카메라 맥박 측정을 위한 다이내믹 레인지 재구성 알고리즘)

  • Park, Sang Wook;Cha, Kyoungrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, handy pulse measurement method was introduced by using smart phone camera. However, measured values are not consistent with the variations of external light conditions, because the external light interfere with dynamic range of captured pulse image. Thus, adaptive dynamic range reconstruction algorithm is proposed to conduct pulse measurement robust to light condition. The minimum and maximum values for dynamic ranges of green and blue channels are adjusted to appropriate values for pulse measurement. In addition, sigmoid function based curve is applied to adjusted dynamic range. Experimental results show that the proposed algorithm conducts suitably dynamic range reconstruction of pulse image for the interference of external light sources.

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Dynamic Synchronous Phasor Measurement Algorithm Based on Compressed Sensing

  • Yu, Huanan;Li, Yongxin;Du, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.53-76
    • /
    • 2020
  • The synchronous phasor measurement algorithm is the core content of the phasor measurement unit. This manuscript proposes a dynamic synchronous phasor measurement algorithm based on compressed sensing theory. First, a dynamic signal model based on the Taylor series was established. The dynamic power signal was preprocessed using a least mean square error adaptive filter to eliminate interference from noise and harmonic components. A Chirplet overcomplete dictionary was then designed to realize a sparse representation. A reduction of the signal dimension was next achieved using a Gaussian observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to realize the sparse decomposition of the signal to be detected, the amplitude and phase of the original power signal were estimated according to the best matching atomic parameters, and the total vector error index was used for an error evaluation. Chroma 61511 was used for the output of various signals, the simulation results of which show that the proposed algorithm cannot only effectively filter out interference signals, it also achieves a better dynamic response performance and stability compared with a traditional DFT algorithm and the improved DFT synchronous phasor measurement algorithm, and the phasor measurement accuracy of the signal is greatly improved. In practical applications, the hardware costs of the system can be further reduced.

Dynamic Mass-measurement control System of Acceleration and Displacement Sensing Type (가속도 변위 검출형 동적 질량 측정 제어 시스템)

  • Kim, B.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.109-116
    • /
    • 1994
  • Quickness and precision are the two most important requirements for an industrial scale used in production lines. In this paper, a new approach, "Dynamic-Mass measurement control System of Acceleration and Displacement(DMS-AD) sensing", is presented to improve some of drowbacks in conventional scales. The system, consisted of acceleration and displace- ment sensors, spring scale and microcomputer, is based on full utilization of dynamic mass measurement of acceleration and displacement via microcomputer-assisted real time monitoring. The rsulting system, when combined with appropriate dynamic mass estimation algorithm software, has shown its effectiveness in terms of two desirable characteristics required. required.

  • PDF

Comparison of dynamic and static methods in the measurement of the initial stiffness of soil (동적 및 정적 실험 방법으로 평가한 지반의 초기 강성 비교)

  • Choo, Jin-Hyun;Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.940-951
    • /
    • 2009
  • A comparative study on dynamic and static measurement of initial stiffness was conducted. Because soil stiffness decreases even at very small strains, the initial stiffness has been measured by dynamic tests using shear wave velocity measurement. On the other hand, due to the advance of local strain measurement, the triaxial testing device is capable of measuring the static initial stiffness. It has been known that initial stiffness measured by static triaxial tests is generally lower than that measured by dynamic tests possibly due to the limitation of static measurement of displacement at very small strains. This study presents experimental results indicating that the elastic shear moduli could be the same both in dynamic and static measurements owing to the soil anisotropy induced by anisotropic stresses.

  • PDF

An Integrated Model of Static and Dynamic Measurement for Seat Discomfort

  • Daruis, Dian Darina Indah;Deros, Baba Md;Nor, Mohd Jailani Mohd;Hosseini, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • A driver interacts directly with the car seat at all times. There are ergonomic characteristics that have to be followed to produce comfortable seats. However, most of previous researches focused on either static or dynamic condition only. In addition, research on car seat development is critically lacking although Malaysia herself manufactures its own car. Hence, this paper integrates objective measurements and subjective evaluation to predict seat discomfort. The objective measurements consider both static and dynamic conditions. Steven's psychophysics power law has been used in which after expansion; ${\psi}\;=\;a+b{\varphi}_s^{\alpha}+c{\varphi}_v^{\beta}$ where ${\psi}$ is discomfort sensation, ${\varphi}_s^{\alpha}$ is static modality with exponent ${\alpha}$ and ${\varphi}_v^{\beta}$ is dynamic modality with exponent ${\beta}$. The subjects in this study were local and the cars used were Malaysian made compact car. Static objective measurement was the seat pressure distribution measurement. The experiment was carried out on the driver's seat in a real car with the engine turned off. Meanwhile, the dynamic objective measurement was carried out in a moving car on real roads. During pressure distribution and vibration transmissibility experiments, subjects were requested to evaluate their discomfort levels using vehicle seat discomfort survey questionnaire together with body map diagram. From subjective evaluations, seat pressure and vibration dose values exponent for static modality ${\alpha}$ = 1.51 and exponent for dynamic modality ${\beta}$ = 1.24 were produced. The curves produced from the $E_{q.s}$ showed better $R_{-sq}$ values (99%) when both static and dynamic modalities were considered together as compared to Eq. with single modality only (static or dynamic only R-Sq = 95%). In conclusion, car seat discomfort prediction gives better result when seat development considered both static and dynamic modalities; and using ergonomic approach.

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF