• Title/Summary/Keyword: Dynamic Modulus Test

Search Result 354, Processing Time 0.038 seconds

Analysis on Relationship between FWD Back-calculated Modulus and Dynamic Modulus of Asphalt Layers for Existing Asphalt Pavements (공용중인 아스팔트 포장의 아스팔트층 동탄성계수와 FWD 역산 탄성계수의 상관관계 분석)

  • Park, Hee Mun;Park, Hong Joon
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.25-31
    • /
    • 2015
  • PURPOSES: The objective of this study is to analyze the relationship between the FWD back-calculated modulus and dynamic modulus of asphalt layers for existing asphalt pavements. METHODS: To evaluate the dynamic modulus of the asphalt mixture in the existing and new asphalt layers, the uniaxial direct tension test was conducted on small asphalt specimens obtained from the existing asphalt-covered pavements. A dynamic modulus master curve was estimated by using the uniaxial direct tension test for each asphalt layer. The falling weight deflectometer (FWD) testing was conducted on the test sections, and the modulus values of pavement layers were back-calculated using the genetic algorithm and the finite element method based back-calculation program. The relationship between measured and back-calculated asphalt layer moduli was examined in this study. The normalized dynamic modulus was adopted to predict the stiffness characteristics of asphalt layers more accurately. RESULTS: From this study, we can conclude that there is no close relationship between dynamic modulus of first layer and back-calculated asphalt modulus. The dynamic moduli of second and third asphalt layers have some relation with asphalt stiffness. Test results also showed that the normalized dynamic modulus of the asphalt mixture is closely related to the FWD back-calculated modulus with 0.73 of R square value. CONCLUSIONS: The back-calculated modulus of asphalt layer can be used as an indicator of the stiffness characteristics of asphalt layers in the asphalt-covered pavements.

Characteristics of Dynamic Shear Modulus Mastercurve of Aged or Unaged Asphalt Binders (동전단 마스터곡선을 이용한 아스팔트 바인더의 노화 특성 평가)

  • Yun, Tae Young;Ham, Sang Min;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.87-94
    • /
    • 2013
  • PURPOSES: To characterize the aging effect on asphalt binder, dynamic shear modulus mastercurve of two typical asphalt binders are developed. METHODS: To develop dynamic shear modulus mastercurve, dynamic shear modulus at high temperature and creep stiffness at low temperature are measured by temperature sweep test and bending beam rheometer test, respectively. RESULTS: It is observed that the aging effect on asphalt binder can be clearly observed from dynamic shear modulus mastercurve and the mastercurve can be utilized to predict behavior of asphalt binder at wide range of temperature. CONCLUSIONS: It is confirmed that SBS 5% modified binder has more desirable mechanical property at low and high temperature as a pavement material comparing to PG64-22 binder and the mastercurve is an effective tool to evaluate the property of asphalt binder.

Development of the Predicted Model for the HMA Dynamic Modulus by using the Impact Resonance Testing and Universal Testing Machine (충격공진실험과 만능재료시험기에 의한 아스팔트 공시체의 동탄성계수 예측 모델 개발)

  • Kim, Do Wan;Kim, Dong-Ho;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.43-50
    • /
    • 2014
  • PURPOSES : The dynamic modulus can be determined by applying the various theories from the Impact Resonance Testing(IRT) Method. The objective of this paper is to determine the best theory to produce the dynamic modulus that has the lowest error as the dynamic modulus data obtained from these theories(Complex Wave equation Resonance Method related to either the transmissibility loss or not, Dynamic Stiffness Resonance Method) compared to the results for dynamic modulus determined by using the Universal Testing Machine. The ultimate object is to develop the predictive model for the dynamic modulus of a Linear Visco-Elastic specimen by using the Complex Wave equation Resonance Method(CWRM) came up for an existing study(S. O. Oyadiji; 1985) and the Optimization. METHODS : At the destructive test which uses the Universal Testing Machine, the dynamic modulus results along with the frequency can be used for determining the sigmoidal master curve function related to the reduced frequency by applying Time-Temperature Superposition Principle. RESULTS : The constant to be solved from Eq. (11) is a value of 14.13. The reduced dynamic modulus obtained from the IRT considering the loss factor related to the impact transmissibility has RMSE of 367.7MPa, MPE of 3.7%. When the predictive dynamic modulus model was applied to determine the master curve, the predictive model has RMSE of 583.5MPa, MPE of 3.5% compared to the destructive test results for the dynamic modulus. CONCLUSIONS : Because we considered that the results obtained from the destructive test had the most highest source credibility in this study, the dynamic modulus data obtained respectively from DSRM, CWRM were compared to the results obtained from the destructive test by using th IRT. At the result, the reduced dynamic modulus derived from DSRM has the most lowest error.

Prediction and Application of the Dynamic Modulus of Elasticity of Concrete Using the Wavelet Analysis (웨이블릿 해석을 이용한 콘크리트의 동탄성계수 추정 및 응용)

  • Jung, Beom-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • The dynamic modulus of elasticity of concrete can be determined nondestructively using impact echo test as prescribed in KS F 2437. The fundamental longitudinal frequency of the concrete cylinders with free-free boundary condition was estimated by the wavelet transform theory. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the features of the pertinent signals can be characterized in the time-frequency plane. For the concrete mix design utilized in this study, no significant difference between the dynamic and the static moduli of elasticity was observed. This was contrary to the perceived general notion of having the dynamic modulus considerably higher than the static modulus. It has been shown that the modulus from static and dynamic by impact echo test are comparable to each other fairly well, when the effect of strain level was properly taken into account. In this experimental test, it was shown that the dynamic modulus is approximately equal to the tangent modulus at $1{\times}10^{-4}$ strain level.

Nonlinear dynamic properties of dynamic shear modulus ratio and damping ratio of clay in the starting area of Xiong'an New Area

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.97-115
    • /
    • 2024
  • In this paper, a database consisting of the dynamic shear modulus ratio and damping ratio test data of clay obtained from 406 groups of triaxial tests is constructed with the starting area of Xiong'an New Area as the research background. The aim is to study the nonlinear dynamic properties of clay in this area under cyclic loading. The study found that the effective confining pressure and plasticity index have certain influences on the dynamic shear modulus ratio and damping ratio of clay in this area. Through data analysis, it was found that there was a certain correlation between effective confining pressure and plasticity index and dynamic shear modulus ratio and damping ratio, with fitting degree values greater than 0.1263 for both. However, other physical indices such as the void ratio, natural density, water content and specific gravity have only a small effect on the dynamic shear modulus ratio and the damping ratio, with fitting degree values of less than 0.1 for all of them. This indicates that it is important to consider the influence of effective confining pressure and plasticity index when studying the nonlinear dynamic properties of clays in this area. Based on the above, prediction models for the dynamic shear modulus ratio and damping ratio in this area were constructed separately. The results showed that the model that considered the combined effect of effective confining pressure and plasticity index performed best. The predicted dynamic shear modulus ratio and damping ratio closely matched the actual curves, with approximately 88% of the data falling within ±1.3 times the measured dynamic shear modulus ratio and approximately 85.1% of the data falling within ±1.3 times the measured damping ratio. In contrast, the prediction models that considered only a single influence deviated from the actual values, particularly the model that considered only the plasticity index, which predicted the dynamic shear modulus ratio and the damping ratio within a small distribution range close to the average of the test values. When compared with existing prediction models, it was found that the predicted dynamic shear modulus ratio in this paper was slightly higher, which was due to the overall hardness of the clay in this area, leading to a slightly higher determination of the dynamic shear modulus ratio by the prediction model. Finally, for the dynamic shear modulus ratio and damping ratio of the engineering site in the starting area of Xiong'an New Area, we confirm that the prediction formulas established in this paper have high reliability and provide the applicable range of the prediction model.

Application of a Simple Non Destructive Test Method to Obtain the Dynamic Modulus of Asphalt Mixtures used for an Asphalt Trackbed Foundation (아스팔트 노반 설계를 위한 간이 비파괴시험에 의한 동탄성계수 취득방법 적합성 분석)

  • Lim, Yujin;Lee, SeongHyeok;Lee, JinWook;Lee, ByeongSik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2014
  • An asphalt trackbed is to be adapted in Korea to provide better bearing capacity and stability to the track and a comfortable ride to passengers. The dynamic modulus of Hot Mixed Asphalt(HMA) mixes is a critical design input parameter to determine the thickness of the asphalt trackbed. In this study, impact resonant tests and ultrasonic test methods are designed to obtain the dynamic modulus. These test methods are also verified to check the etffectiveness of constructing a master curve of the dynamic modulus over a wide range of frequencies and temperatures. The test results are compared to the computed dynamic modulus using AASHTO 2002 and the KPRP's proposed model. It can be concluded that the proposed simple test methods are effective to obtain the dynamic moduli of the asphalt mixes for the design of an asphalt trackbed foundation.

Effect of Temperature and Aging on the Relationship between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.445-450
    • /
    • 2001
  • The paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model equations are proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperature of 10, 23, and 50 $^{\circ}C$. Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus, which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The proposed relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type, temperature, and aging.

  • PDF

Evaluation of Correlation between Aggregate Gradation and Dynamic Modulus with Statistical Analysis (통계분석을 통한 골재입도와 동탄성계수 상관도 평가)

  • Lee, Kwan-Ho;Cho, Kyung-Rae;Lee, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.11-18
    • /
    • 2008
  • In recent, lots of researches for mechanical-empirical design concept for asphalt pavement are on going. AASHTO 2002 Design Guide in USA and KPRP(Korean Pavement Research Program) in Korea are under developing. In these programs, the mechanical properties of hot mix asphalt are a key role for design and analysis. Unfortunately, there is no proper database on the mechanical properties of hot mix asphalt, such as dynamic modulus. The use of dynamic modulus has couple of good advantages which is based on temperature, traffic loading and frequency on pavement. In this research, the verification of the relationship between maximum nominal aggregate size and dynamic modulus has been carried out. Also, test specimen size effect on dynamic modulus has been conducted. Considering the limitation of laboratory testing machine in Korea, test specimen with 100mm diameter and 150mm height is recommended for dynamic modulus test. Also, as the maximum nominal aggregate size increases, the dynamic modulus of hot mix asphalt increases.

  • PDF

Characteristics of Dynamic Properties of Granite Specimen from Chungnam Yeongi Area (충남 연기군 지역 화강암 시험편의 동적물성 특성에 관한 연구)

  • Min, June-Hyun;Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.480-493
    • /
    • 2011
  • Dynamic rock property is one of most important parameters in design of earthquake-resistant structures. In this study, free-free resonant column test has been conducted to obtain dynamic Young's modulus, dynamic shear modulus, and damping ratio among dynamic properties with granite specimen of Chungnam Yeongi area. The dynamic properties obtained from this test were compared with the physical properties from static rock tests, and their relationship has been analyzed. From our study, it has been concluded that the dynamic Young's modulus and the dynamic shear modulus are linearly proportional to the elastic wave velocity. And also the damping ratio has been identified to be in non-linear inverse proportion to the elastic wave velocity.

Performance Evaluation of Cold Recycled Asphalt Mixtures with Asphalt Emulsion and Inorganic Additives (무시멘트 첨가제를 활용한 상온 재활용 아스팔트 혼합물의 성능 분석)

  • Park, Chang Kyu;Kim, kyungsu;Kim, Won Jae;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • PURPOSES :The objective of this study is to evaluate the performance of asphalt mixtures containing inorganic additive and a high content of reclaimed asphalt pavement (RAP). METHODS : The laboratory tests verified the superior laboratory performance of inorganic additive compared to cement, in cold recycled asphalt mixtures. To investigate the moisture susceptibility of the specimens, tensile strength ratio (TSR) tests were performed. In addition, dynamic modulus test was conducted to evaluate the performance of cold recycled asphalt mixture. RESULTS :It was determined that NaOH solution mixed with $Na_2SiO_3$ in the ratio 75:10 provides optimum performance. Compared to Type B and C counterparts, Type A mixtures consisting of an inorganic additive performed better in the Indirect tensile strength test, tensile strength ratio test, and dynamic modulus test. CONCLUSIONS : The use of inorganic additive enhances the indirect strength and dynamic modulus performance of the asphalt mixture. However, additional experiments are to be conducted to improve the reliability of the result with respect to the effect of inorganic additive.