• Title/Summary/Keyword: Dynamic Stress Time History

Search Result 76, Processing Time 0.036 seconds

A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures (차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구)

  • 이상범;박태원;임홍재
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.686-691
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

Calculation of Dynamic Stress-Time History for a Vehicle Using Flexible Body Dynamics Model (유연체 동력학 모델을 이용한 차량의 동응력-시간선도 계산)

  • Park, Chan-Jong;Yim, Hong-Jae;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.702-707
    • /
    • 2000
  • Under the rapid change of a new vehicle model, it is necessary to develop a durability analysis technique using computer simulation. In order to do this. reliable dynamic stress-time history for the vehicle components must be calculated on various road conditions. In this paper, a full vehicle simulation model which is composed of flexible frame and chassis components is proposed and verified its reliability from the comparison with field test data. Finally, dynamic stress-time history on the rear chassis components is predicted with hybrid and modal superposition method.

  • PDF

Calculation of Dynamic Stress Time History of a Component Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 동응력 이력 계산기술 개발)

  • 박찬종;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • In order to design a reliable machine component efficiently, it is necessary to set up the process of durability analysis using computer simulation technique. In this paper, two methods for dynamic stress calculation, which are basis of durability analysis, are reviewed. Then, a user-oriented dynamic stress analysis program is developed from these two algorithms together with a general-purpose flexible body dynamic analysis and structural analysis programs. Finally, a slider-crank mechanism which has a flexible connecting-rod is chosen to show the special characteristics of these two dynamic stress calculation methods.

  • PDF

Accelerated Durability Analysis of Suspension System (Suspension System의 가속내구해석)

  • 민한기;정종안;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures (차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구)

  • Lee, Sang-Beom;Park, Tae-Won;Park, Jong-Sung;Lee, Sun-Byung;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

Parametric study on dynamic behavior of rectangular concrete storage tanks

  • Yazdanian, Mohsen;Fu, Feng
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.189-206
    • /
    • 2017
  • Tanks are used to store a wide variety of liquids such as oil, gasoline and water. It is reported that, a large number of tanks have been damaged during severe earthquakes. Therefore, understanding their behavior under earthquake is an important subject for structural engineers. In this paper, a comprehensive study is presented on dynamic response of tanks. A parametric study has been completed on the rectangular storage tanks with aid of finite element method (FEM). Various parameters are investigated, such as; liquid height, density and earthquake with different peak ground acceleration (PGA). When investigating these parameters, modal and time history method is used. Six different earthquake records are used for time history analysis. The analysis results show that when the PGA increases by 10.7 times, the maximum displacements, stress, sloshing and base shear increase by 11.4, 22.6, 5.46 and 17.8 times, respectively and when the liquid height increases by two times, the absolute maximum values of stress, displacements, base shear and sloshing increase 1.65, 2.04, 2.05 and 1.34. Furthermore, values of sloshing increase with decrease in density.

Numerical modeling of shear displacement on rock fractures due to seismic movement (지진에 의한 암석 절리면에서의 전단변위 예측 모델링)

  • Lee, Changsoo;Kim, Jin-Seop;Choi, Young-Chul;Choi, Heui-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.411-414
    • /
    • 2014
  • Numerical modeling was conducted to estimate the amount of dislocation that may occur across a frictionless fracture during an earthquake using commercial code FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions). The applied motion was calculated to represent a Richter 6.0 magnitude earthquake at distances of 2 km from the fracture. The velocity-time history was generated from Svensk $K{\ddot{a}}arnbr{\ddot{a}}anslehantering$ AB report. In the report, The velocity field resulting from an earthquake on a fault located in the near-field (2 km distance) was modelled using a finite difference program, WAVE. The stress-time history was substituted for velocity-time history to perform dynamic analysis using FLAC3D. During the earthquake, the maximum dislocation and change of shear stress were about 1 cm and 2MPa, respectively. Because the fracture is frictionless in this study, all dislocations relax to zero after the earthquake motions have ceased.

  • PDF

A Study on Dynamic Analysis and Fatigue Life of the Belt in the OHT Vehicle (OHT 차량 벨트 동특성 및 피로 수명에 관한 연구)

  • Jung Il-Ho;Kim Chang-Su;Cho Dong-Hyeob;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1085-1092
    • /
    • 2005
  • The OHT(Over Head Transportation) Vehicle transports heavy products quickly and repeatedly at the industrial workplace. The belt in the OHT vehicle is used to support the weight of the OHT Cage. The fatigue of the belt is caused by the dynamic load during the operation time. Since the fatigue fracture of the belt affects the safety at the workplace, the correct prediction of the dynamic load is necessary to calculate the fatigue life of the belt on the design step. In this paper a computer aided analysis method is proposed for the belt in the early design stage using dynamic analysis, stress analysis, belt tensile test, belt fatigue test and fatigue lift prediction method. From the dynamic load time histories and the stress of the belt FE model, a dynamic stress time history is produced. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The method developed in this paper is used to reduce the time and cost for designing the OHT belt in different environment and condition.

Technology for Fatigue Life Prediction of Mechanical Components using Multibody Dynamics (다물체동력학을 이용한 기계 부품의 피로수명 예측 기술)

  • Han, Hyeong-Seok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.47-55
    • /
    • 1997
  • Fatigue life prediction of mechanical components is necessary to develop new products, which is very expensive and time-consuming. This paper reviews technologies proposed for computation of dynamic stress in mechanical components. The methods based on multibody dynamics are considering more real operational conditions than other methods. The technology for fatigue life prediction without the prototype for experiment results in cost and time saving. This technology can be applied to design of various mechanical components like carbody.

  • PDF

Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구)

  • 서종휘;정일호;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.