• Title/Summary/Keyword: ECG Conversion

Search Result 13, Processing Time 0.026 seconds

Improvement of a Binary ECG Conversion System Utilizing Compilation Technique (컴파일 방식을 이용한 바이너리 ECG 변환 시스템의 성능 개선)

  • Koo, Heung-Seo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1151-1156
    • /
    • 2007
  • In this paper, we develop a new conversion method for implementing binary ECG(Electrocardiogram) conversion scheme to improve our previous research works that supported the conversion of binary ECG files into HL7 aECG for enhancing interoperability of ECG data. HL7 aECG is a XML-based standard for interoperability of ECG waveform. To improve the performance of ECG data conversion, we utilize a compilation-based ECG conversion method on binary ECG files. Our new method supports both flexibility of BED-based ECG conversion mechanism and the performance of direct conversion mechanism.

ECG Conversion System Using Description Method for Binary Files (바이너리 파일 디스크립션 방식을 이용한 ECG 변환 시스템)

  • Koo, Heung-Seo;Jung, Shin-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.464-470
    • /
    • 2006
  • In this paper, we develop a descriptor based on binary ECG conversion system that supports the conversion of a binary ECG format into XML-based HL7 aECG for the interoperability of ECG. HL7 aECG is a XML based standard for interoperability of ECG waveform. For the conversion of variety of ECG formats, we propose a binary ECG description mechanism. In order to describe binary ECG more efficiently, we develop a XML-based Binary ECG Description (BED) Language. One of the powerful features of using the XML-based ECG Description mechanism is that ECG data can read from various formats without the modification of source code of conversion system, and consequently it reduces conversion system maintenance costs.

Design of Visual Tool for Efficient Descripting of Binary ECG File Formats (바이너리 심전도 파일 포맷의 효율적인 디스크립션을 위한 시각적 도구 설계)

  • Koo, Heung-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • In this study, A BED(Binary ECG description) based binary ECG conversion system is that supports the conversion of a binary ECG format into XML-based HL7 aECG for interoperability of ECG. HL7 aECG is a XML based standard lot interoperability of ECG waveform. However, it is difficult for beginners to write the BED document of binary BED conversion system in XML. We implement a BED Studio on the Java Servlet engine that allows beginners to write BED documents more easily. Our system consists of three parts: Visual Editor, Text Editor, and Format Checking Viewer. Format Checking Viewer support users to detect the format errors in the XML files, so-called BED documents, that describe the data format of the targer binary ECG file in the BED-based binary ECG conversion system, so may reduce the format errors in BED documents.

Development of an Ambulatory Wearable System for Continuous Patient Monitoring (휴대용 심전도 모니터링 계측 시스템 개발에 관한 연구)

  • Park, Chan-Won;Jeon, Chan-Min
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.920-923
    • /
    • 2003
  • An wearable electrocardiogram (ECG) monitoring system is a widely used non-invasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we have a portable ECG monitoring system with conductive fiber which was characterized by the small-size and the low power consumption. The system consists of conductive fibers, one-chip microcontroller, ECG preprocessing circuit, and monitoring software to be able to record and analyze in PC. ECG preprocessing circuit is made of pre-amplifier with gain of 10, band-pass filter with bandwidth of 0.5-120Hz and 2.5V offset circuit for A/D conversion. ECG signals obtained by sensor are included with corrupted noises such as a baseline wandering, 60 Hz power noise and interference noise by body movement. For cancellation corrupted noises in signals obtained by conductive fiber, we used the wavelet decomposition of wavelet transforms in MATLAB toolbox.

  • PDF

Implementation and evaluation of the BCG measurement system for non-constrained health monitoring (무구속 건강모니터링을 위한 심탄도 계측 시스템 구현 및 평가)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This research proposes measuring of BCG(ballistocardiogram) to monitor heart activities in a non-constrained environment, at home or work. Unlike with ECG, measuring BCG does not require the attachment of leads on the subject's body and allows signal measuring in a non-constrained state. It enables effective long-term monitoring of cardiac conditions. In this study a chair type BCG measurement system to continuous monitor the activity of the heart is implemented. The instrument consists of upper petal and ready for press of chair load cell sensor is attached to measure the change of the object's weight. In order to extract the output ballistic signal from the weight and force sensor signals. Beside the signal processing circuit for the digital conversion, the ballistic signal is detected using DAQ equipment. Signal processing algorithm including wavelet transforms for noise cancellation, template matching for normalization and peak detection in BCG is developed. ECG and BCG were concurrently measured to evaluate the performance of the system, and comparing the characteristics of the two signals verified the possibility of the system in non-constrained and nonconscious health monitoring.

Multi-biological Signal-based Smart Trigger System for Cardiac MRI (다중 생체 신호를 이용한 심장 자기공명영상 스마트 트리거 시스템)

  • Yang, Young-Joong;Park, Jinho;Hong, Hye-Jin;Ahn, Chang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.945-949
    • /
    • 2014
  • In cardiac magnetic resonance imaging (CMRI), heart and respiratory motions are one of main obstacles in obtaining diagnostic quality of images. To synchronize CMRI to the physiological motions, ECG and respiratory gatings are commonly used. In this paper multi-biological signal (ECG, respiratory, and SPO2) based smart trigger system is proposed. By using multi-biological signal, the proposed system is robust to the induced noise such as eddy current when gradient pulsing is continuously applied during the examination. Digital conversion of the multi-biological signal makes the system flexible in implementing smart and intelligent algorithm to detect cardiac and respiratory motion and to reject arrhythmia of the heart. The digital data is used for real-time trigger, as well as signal display, and data storage which may be used for retrospective signal processing.

Doses of Coronary Study in 64 Channel Multi-Detector Computed Tomography : Reduced Radiation Dose According to Varity of Examnination Protocols (64 채널 Multi-Detector Computed Tomography를 이용한 관상동맥검사의 선량 : 검사 프로토콜 다변화에 따른 환자선량 감소)

  • Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • Purpose : To compare radiation dose for coronary CT angiography (CTA) obtained with 6 examination protocols such as a retrospectively ECG gated helical scan, a prospectively ECG gated sequential scan, low kVp technique, and cardiac dose modulation technique. Materials and Methods : Coronary CTA was performed by using 6 current clinical protocols to evaluate effective dose and organ dose in primary beam area with anthropomorphic female phantom and glass dosimetric system in 64 channel multi-detector CT. After acquiring topograms of frontal and lateral projection with 80 kVp and 10 mA, main coronary scan was done with 0.35 sec tube rotation time, 40 mm collimation ($0.625\;mm{\times}64\;ea$), small scan field of view (32 cm diameter), 105 mm scan length. Heart beat rate of phantom was maintained 60 bpm in ECG gating. In constant mAs technique 120 kVp, 600 mA was used, and 100 kVp for low kVp technique. In a retrospectively ECG gated helical CT technique 0.22 pitch was used, peak mA (600 mA) was adopted in range of $40{\sim}80%$ of R-R interval and 120mA(80% reduction) in others with cardiac dose modulation. And 210 mAs was used without cardiac dose modulation. In a prospectively ECG gated sequential CT technique data were acquired at 75% R-R interval (middle diastolic phase in cardiac cycle), and 120 msec additional padding of the tube-on time was used. For effective dose calculation region specific conversion factor of dose length product in thorax was used, which was recommended by EUR 16262. Results : The mean effective dose for conventional coronary CTA without cardiac dose modulation in a retrospectively ECG gated helical scan was 17.8 mSv, and mean organ dose of heart was 103.8 mGy. With low kVp and cardiac dose modulation the mean effective dose showed 54.5% reduction, and heart dose showed 52.3% reduction, compared with that of conventional coronary CTA. And at the sequential scan(SnapShot pulse mode) under prospective ECG gating the mean effective dose was 4.9 mSv, this represents an 72.5% reduction compared with that of conventional coronary CTA. And heart dose was 33.8 mGy, this represents 67.4% reduction. In the sequential scan technique under prospective ECG gating with low kVp the mean effective dose was 3.0 mSv, this represents an 83.2% reduction compared with that of conventional coronary CTA. And heart dose was 17.7 mGy, this represents an 82.9% reduction. Conclusion : In coronary CTA at retrospectively ECG gated helical scan, cardiac dose modulation technique using low kVp reduced dose to 50% above compared with the conventional helical scan. And the prospectively ECG gated sequential scan offers substantially reduced dose compared with the traditional retrospectively ECG gated helical scan.

  • PDF

Implementation of a Bluetooth-LE Based Wireless ECG/EMG/PPG Monitoring Circuit and System (블루투스-LE 기반 심전도/근전도/맥박 무선 모니터링 회로 및 시스템 구현)

  • Lee, Ukjun;Park, Hyeongyeol;Shin, Hyunchol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.261-268
    • /
    • 2014
  • This paper presents a electrocardiogram(ECG), electromyogram(EMG), and Photoplethysmography(PPG) signal wireless monitoring system based on Bluetooth Low Energy (BLE). ECG and EMG sensor interface analog front-end circuits are designed by using off-the-shelf parts. Texas Instruments(TI)'s CC2540DK is used for BLE-based communication. Two CC2540DK modules are used as Peripheral and Central nodes. In peripheral device, vital signals are acquired by the analog front-ends and fed to ADC for analog-to-digital conversion. The peripheral transmitts the data through the air to the central device. The central device receive the data and sends them to PC using UART. GUI is designed using Labview for displaying the acquired vital signals. The developed system can be used for future ubiquitous wireless healthcare system based on bluetooth 4.0.

An implementation of automated ECG interpretation algorithm and system(II) - Estimation and Eliminator of interference components (심전도 자동 진단 알고리즘 및 장치 구현(II) - 잡음 성분 평가 및 제거기)

  • Kweon, H.J.;Kong, I.W.;Lee, S.H.;Shin, K.S.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.283-287
    • /
    • 1996
  • This paper described the estimator and eliminator far three kinds of artifacts in electrocardiogram. The most efficient estimation of baseline drift could be obtain in the cubic spline interpolation method with the PQ and TP segment which are considered to be isoelectric, from the experimental results obtained from the applied 4 types of algorithms. The time loss and distortion could be avoided with the aid of detection criteria by checking if baseline drifts exist or not. The AIEF proposed in this paper was verified as having the best removal performance with less distortion in the QRS complex through the comparison of 5 proposed algorithms. furthermore, the AIEF are most suitable far the ECG analyzer which was only needed relatively short time data due to the fast conversion into the stable state. The proposed parabolic filter with 11 points width was identified as having the best performance for the elimination of muscle artifacts. Also we could obtain 99.7% detection accuracy of spike component and minimize the error identifying QRS complex as spike.

  • PDF

Implementation of the Multi-channel Vital Signal Monitoring System for Home Healthcare (홈 헬스케어를 위한 다채널 생체신호 모니터링 시스템 구현)

  • Youn, Jeong-Yun;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.197-202
    • /
    • 2010
  • In this paper, multi-channel vital signal monitoring system was implemented for home healthcare. The system able to measure vital signal for example ECG, PPG and temperature simultaneously at patients’ home. The vital signal is an essential parameter for healthcare application and can be easily extracted from patients. The implemented system consist of sensor parts for signal extraction, signal amplifier and filter for analog circuit, analog signal to digital conversion for controlling devices and lastly the monitoring program. The system able to transmit vital signals using Bluetooth wireless communications to personal computer or home server. And the tele-monitoring system able to display real-time signals using web monitoring program. In medical application, the vital signal parameter able to stored and saved in the web server for further medical analysis. This system opens up the possibilities of ubiquitous healthcare where further implementation can be easily done.