• Title/Summary/Keyword: EEFL

Search Result 68, Processing Time 0.031 seconds

Study on High Efficiency EEFL Backlight inverter for 32-inch LCD TV

  • Oh, Won-Sik;Cho, Kyu-Min;Moon, Gun-Woon;Min, Sook-Kyu;Kim, Hyun-Jin;Jeon, Hyoung-Jun;Kim, Jong-Sun;Mim, Byoung-Woon
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.405-407
    • /
    • 2005
  • As the screen size of LCD increases, EEFL(External Electrode Fluorescent Lamp) has been suggested to be applicable as backlight source for LCD . Since the electrodes of EEFL are outside of the tube, EEFL enhances the lifetime compared with CCFL(Cold Cathode Fluorescent Lamp), and a single inverter can drive multiple EEFL tubes of which luminance is uniform Therefore, a compact design can be realized and the cost of EEFL application would be much lower than that of CCFL. Moreover, EEFL inverter has higher efficiency per unit power than CCFL inverter. In this paper, a complementary full-bridge PWM(Pulse Width Modulation) inverter was designed for 32-inch LCD TV backlight which has 20 EEFL tubes and adapted two different driving methods to the EEFL inverter. The validity of this study is confirmed from the experimental results.

  • PDF

EEFL Inverter Design with Program Control (프로그램 제어용 EEFL 인버터 설계)

  • Lee, Choong-Ho;Kim, Jung-Sam;Yoon, Dong-Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • Proposed EEFL inverter design method with Dimming control to use microprocessor. Reduce power loss using Energy Recovery method, and design inverter control program that use RS-232 communication. Also, low temperature driving time shortened 50% that use duty variable control.

  • PDF

Analysis and Design of Full-Bridge RLC Series-Resonant Inverter for EEFL Backlight of 32-inch LCD TV (32인치 LCD TV의 EEFL 인버터 백라이트에 적합한 풀브리지 RLC 직렬 공진 인버터의 분석 및 설계)

  • Oh Won-Sik;Cho Kyoo-Min;Moon Gun-Woo;Lee Sang-Gil;Park Mun-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.235-238
    • /
    • 2006
  • As the screen size of LCD TV increases, an external electrode fluorescent lamp (EEFL) has been suggested to be applicable as backlight source for LCD TV. Since the EEFL has non-linear characteristics, which makes the analysis and design complicated. In this paper, the characteristics of the EEFL are investigated and a full-bridge RLC series-resonant inverter is analyzed and designed for EEFL backlight of 32-inch LCD TV. Finally, the experimental results are shown to validate the analysis and design.

  • PDF

EEFL using intelligent lighting system control device (EEFL을 이용한 지능형 조명시스템 제어장치)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • The purpose of this study is to develop a lighting apparatus of the illuminance and color temperature to maximize the ability of the optimal combination of light sources that can be controlled efficiently control device. Finding people comfortable feeling for indoor lighting that can be used in a variety of color temperature illumination area by combining light sensitivity can be realized. Lighting apparatus for fluorescent lamps with different color temperature of 2000K and 8000K, and by varying the quantity of each of the fluorescent lamps, the illuminance of lighting equipment and color temperature through optical simulations were evaluated. By infrared remote control receiver, divided into 5 types of relaxation, conversation, meeting, hospitality, arts and the lighting environment you want to transfer the PC0 ~ PC4 through the parallel port on the mode selected by the user at the receiving end the DC voltage output. EEFL inverter input DC voltage and the DC input voltage, depending on the level of EEFL dimming value (illuminance and color temperature) lighting environment you want to create change while using a PIR sensor EEFL automatically turn off if people do not have was developed so that the power consumption so you can save.

Luminescent Characteristics of External Electrode Fluorescent Lamp(EEFL) for LCD Backlight Applications (LCD Backlight용 외부전극 형광램프의 발광특성)

  • 이순석;임성규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1016-1021
    • /
    • 2002
  • Luminescent characteristics of FLs were studied according to the structure of electrode for LCD backlight applications. The luminance and luminous efficiency of the FLs fabricated under same conditions were measured and evaluated as functions of magnitude of applied voltage and widths of external electrode. The luminance and luminous efficiency of CCFL at 12 V were 27600 cd/$m^2$ and 35.3 lm/w, respectively The luminance of EEFLS increased as the widths of external electrode increased, and the luminous efficiency of EEFLS showed to increase to 20 mm of electrode width) and to decrease at wider than 20 m of electrode widths. The luminance and luminous efficiency of EEFL with 20 mm of electrode widths were 21600 cd/$m^2$ and 26500 cd/$m^2$, 35.6 lm/w and 34.8 lm/w at 12 V, 14 V, respectively.

Optical Characteristics of EEFL (External Electrode Fluorescence Lamp) for Large Size BLU (대화면 BLU용 EEFL의 광학적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.74-76
    • /
    • 2006
  • An external electrode fluorescent lamp (EEFL) has an advantage of a long lifetime in the ear1y stages of the study on plasma discharge, interest in the lamp continues. Researches on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter, EEFL presented the possibility of using it as a light source for back-lights. However, because EEFL generates plasma using wall charges, which considers the impedance characteristics of glass based on the structural principle in discharge, it can be significant1y affected by frequency. Thus, this study verified the change in the characteristics of electromagnetic fields according to the change in frequency through a Maxwell's electromagnetic field simulation and examined the relationship between the change in the EEFL frequency and brightness by measuring the optical characteristics. In addition, the characteristics of the transformation of energy orbits were verified by investigating the characteristics of the wavelength according to the change in frequency through the OES.

  • PDF

Comparison of Optical Characteristics between CCFL and EEFL in Direct-type Backlight Unit

  • Han, Jeong-Min;Han, Jin-Woo;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.268-273
    • /
    • 2007
  • In this study, It was studied about the luminance characteristics of 17 inch direct-type back light using EEFL(external electrode fluorescent lamp) and CCFL(cold cathode fluorescent lamp). The EEFL has a long life time because the electrode is installed outside of lamp. And it is produced in lower price than conventional CCFL. Moreover, it does not need process of installing internal electrode. However, the EEFL technology has several problems such as difficulty of designing driving inverter and preventing this phenomenon along the skin of lamps. We suggested two types of backlight unit for LCD TV application using the EEFL and the CCFL. We found optimized optical design parameters. We set the optical variation parameters such as lamp height, lamp distance, total thickness, and angles of inner walls. We achieved 7580 nits of center luminance, 82% of luminance uniformity by using 20 lamps of the EEFL and 7297 nits of center luminance, 78% of luminance uniformity by using 16 lamps of the CCFL.

A Study on the Operating Characters of the Piezoelectric Inverter to Drive EEFL for a Large Screen (대화면 Backlight를 위한 EEFL 구동용 압전 인버터 운전 특성에 관한 연구)

  • Park, Hong-Sun;Yang, Seung-Hak;Lim, Young-Cheol;Han, Keun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • In this paper, EEFL, which is advantageous for driving multi-lamp and is able to reduce number of inverter, is used and Piezoelectric Transformer, which is able to reduce self loss, miniaturize and has high boosting transfer rate, and parallel connected to drive multi-lamp. For optimized EEFL driver circuit configuration, a Push-Pull type Piezoelectric inverter was designed and a simulation analysis was performed on the inverter circuit, and by applying multiple different type of driving methode, it is proved that a piezoelectric transformer can be used to manufacture a big screen multi-lamp driving inverter.

Design and manufacture of Inverter for Driving Electrode Fluorescent Lamp (외부전극 형광램프 구동용 인버터 설계 및 제작)

  • Yoon, Dong-han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • In this paper, a external electrode fluorescent lamp driving inverter for LCD backlight is designed. AC input from a lamp-driven system to process up to two inverter system for the existing configuration of power-efficient than the system as well as to increase the volume and weight reduction, Furthermore low-cost advantage. AC power input in order to drive EEFL stable and AC 85V ~ 265V power factor increase in the PFC Block can be used for running the Inverter Block EEFL and composed.

Luminance Properties and Electrical Properties by Applied Frequency of External Electrode Fluorescent Lamp(EEFL) (EEFL의 주파수 변화에 따른 전기적 특성과 휘도특성)

  • Lee, Seong-Jin;Lee, Jong-Chan;Park, Noh-Joon;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.355-360
    • /
    • 2007
  • The recent TFT-LCD Trend that is done large size gradually. As size of monitor great, though problem happens, it is that consumer's request which it makes monitor combined TV function. Monitor and TV are no difference externally greatly, but define difference happens as for backlight. An external electrode fluorescent lamp (EEFL) has an advantage of a long lifetime in the early stages of the study on plasma discharge, interest in the lamp continues. Researches on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high Luminance using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter, EEFL presented the possibility of using it as a light source for back-lights. However, because EEFL generates plasma using wall charges, which considers the impedance characteristics of glass based on the structural principle in discharge, it can be significantly affected by frequency. Thus, this study verified the change in the characteristics of electromagnetic fields according to the change in frequency through a Maxwell electromagnetic field simulation and examined the relationship between the change in the EEFL frequency and Luminance by measuring the optical characteristics.