• Title/Summary/Keyword: EMG measurement

Search Result 174, Processing Time 0.051 seconds

A Study of Sensing Locations for Self-fitness Clothing base on EMG Measurement (셀프 피트니스 의류 개발을 위한 근전도 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sangwoo
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.755-765
    • /
    • 2016
  • Recently, interest in monitoring health and sports is growing because of the emphasis on wellness, which is accelerating the development and commercialization of smart clothing for biosignal monitoring. In addition to exerciseeffect monitoring clothing that tracks heart rate and respiration, recently developed clothing makes it possible to monitor muscle balance using electromyogram (EMG). The electrode for EMG have to attached to an accurate location in order to obtain high-quality signals in surface EMG measurement. Therefore, this study develops monitoring clothing suitable for different types of human bodies and aims to extract suitable range of EMG according to movements in order to develop self-fitness monitoring clothing based on EMG measurement. This study identified and attached electrodes on six upper muscles and two lower muscles of ten males in their 20s. After selecting six main motions that create a load on muscles, the 8-ch wireless EMG system was used to measure amplitude value, noise, SNR and SNR (dB) in each part and statistical analysis was conducted using SPSS 20.0. As a result, the suitable range for EMG measurement to apply to clothing was identified as four parts in musculus pectoralis major; three parts in muscle rectus abdominis, two parts each in shoulder muscles, backbone erector, biceps brachii, triceps brachii, and musculus biceps femoris; and four part in quadriceps muscle of thigh. This was depicted diagrammatically on clothing, and the EMG-monitoring sensing locations were presented for development of self-fitness monitoring.

Ergonomic Factors Assessment on Hand Tool Handle (수공구 손잡이의 인간공학적 요소 평가)

  • Yang Sung-Hwan;Cho Mun-Son;Kang Young-Sig
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.1
    • /
    • pp.43-52
    • /
    • 2006
  • The goal of this study is to investigate the ergonomic factors in designing or selecting the hand tool handle. Electromyogram (EMG) were measured for various wrist postures and handle sizes under two loading conditions. Anthropometric data were measured and the correlation with EMG measurement data were analyzed. Investigations of this study show that wrist posture should be neutral for minimum muscle tension and optimum handle size can be found by measuring the EMG measurement data. It show that hand width and EMG measurement data is greatly correlated also. This study can be a guide of designing or selecting a hand tool, but further study with large sample sizes and various groups is needed for making general conclusion.

OWAS and EMG-based Mason's Physical Workload Measurement (OWAS 및 근전도 기반 석공 작업부하 비교연구)

  • Seo, Byoung-Wook;Lim, Tae-Kyung;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.194-195
    • /
    • 2015
  • Methods for measuring the physical workload of construction workers are classified into posture assessment techniques (i.e., OWAS, RULA, etc.) and physiological measurement techniques (i.e., EMG, heart rate, etc.). The one does not quantify the workload on a specific body part of a worker by considering the weight of the hand tools or materials on hand and time for holding a particular posture. This paper presents a procedure for evaluating a physical demand using the electromyography (EMG) sensor. This study compares the EMG measurement and the posture assessment. The case study is carried out on a masonry operation.

  • PDF

A Study on multifidus muscle activation by Needle EMG during shoulder flexion in Chronic Low Back Pain Patients (침 근전도로 측정한 만성 요통 환자의 어깨 굴곡시 나타나는 다열근 활성도 비교)

  • Jang, Won-Seok
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.3
    • /
    • pp.63-69
    • /
    • 2011
  • Purpose : The purpose of study is activation of lumbar multifidus muscle by needle EMG during shoulder flexion in chronic low back pain patients. The subject were consisted of 10 women patients with chronic low back pain and healthy asymtomatic subject 10 women. Methods : 10 women patients with chronic low back pain and healthy asymptomatic subject 10 women is voluntary participated for the research. Subjects were positioned in standing. The needle EMG were measured activation of multifidus. Needle electrode was used to 28 gauge. The shoulder flexion movement used to activate the multifidus was then measured. Results : Results of the analysis showed that asymptomatic subjects had significantly larger multifidus muscle activation compared with CLBP subjects during shoulder flexion. Conclusion : This study will be used as multifidus measurement method of patient with chronic LBP. The multifidus muscle in chronic LBP patient clinical significance. Most of chronic LBP patients have multifidus contraction pattern. Therefore chronic LBP patients necessary multifidus activation measurement with needle EMG.

  • PDF

Reliability and Validity of Ultrasound Imaging and sEMG Measurement to External Abdominal Oblique and Lumbar Multifidus Muscles (외복사근과 다열근에 대한 초음파 영상과 표면 근전도 측정방법의 신뢰도와 타당도)

  • Kim, Chang-Yong;Choi, Jong-Duk;Kim, Suhn-Yeop;Oh, Duck-Won;Kim, Jin-Kyung
    • Physical Therapy Korea
    • /
    • v.18 no.1
    • /
    • pp.37-46
    • /
    • 2011
  • The purpose of this study was to investigate intra-rater reliability and determine the validity of electromyography (EMG) measurements to represent muscle activity and ultrasonography (US) to represent muscle thickness during manual muscle testing (MMT) to external abdominal oblique (EO) and lumbar multifidus (MF). Twenty healthy subjects were recruited for this study and asked to perform MMT at differing levels. The subjects' muscle activity using EMG was measured by a ratio to maximum voluntary contraction (MVC) and root mean square (RMS) methods. The subjects' muscle thickness using US was measured by raw muscle thickness and change ratio of thickness to maximum (MVC) or resting condition. In three trials, measurements were performed on each subject by one examiner. The intra-rater reliability of measurements of EMG and US to EO and MF was calculated using intra-class coefficients. The intra-rater reliability of all measurements was excellent (ICC=.75~.98) in EMG and US. The conduct validity was calculated by one-way ANOVA with repeated measurements to compare whether the EMG and US measurements were different between MMT at different levels. There was only a significant difference between all grades at %MVC thickness measurement of US. These results suggest that a %MVC thickness measurement of US was a more sensitive and discriminate in all manual muscle testing grades. This information will be useful for the selection of US measurement and analysis methods in clinics.

Assessment of Muscle Fatigue Associated with Prolonged Standing in the Workplace

  • Halim, Isa;Omar, Abdul Rahman;Saman, Alias Mohd;Othman, Ibrahim
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.31-42
    • /
    • 2012
  • Objectives: The objectives of this study were to determine the psychological fatigue and analyze muscle activity of production workers who are performing processes jobs while standing for prolonged time periods. Methods: The psychological fatigue experienced by the workers was obtained through questionnaire surveys. Meanwhile, muscle activity has been analyzed using surface electromyography (sEMG) measurement. Lower extremities muscles include: erector spinae, tibialis anterior, and gastrocnemius were concurrently measured for more than five hours of standing. Twenty male production workers in a metal stamping company participated as subjects in this study. The subjects were required to undergo questionnaire surveys and sEMG measurement. Results: Results of the questionnaire surveys found that all subjects experienced psychological fatigue due to prolonged standing jobs. Similarly, muscle fatigue has been identified through sEMG measurement. Based on the non-parametric statistical test using the Spearman's rank order correlation, the left erector spinae obtained a moderate positive correlation and statistically significant ($r_s$ = 0.552, p < 0.05) between the results of questionnaire surveys and sEMG measurement. Conclusion: Based on this study, the authors concluded that prolonged standing was contributed to psychological fatigue and to muscle fatigue among the production workers.

Development of the measurement system of abdominal obesity based on analysis of abdominal electromyogram (복부 근전도 분석을 통한 복부 비만 측정시스템 개발)

  • Kim, Jung-Ho;Kwon, Jang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.369-376
    • /
    • 2007
  • Recently, obesity that is increasingly becoming a major cause of various diseases is emerging as a serious social problem. In order to solve this problem, the necessity of measurement systems for overweight management has increased. This paper is a study on the measurement system for obesity management that can offer right medical services everywhere and allways by analyzing EMG (electromyograph) of the abdomen and then checking one's health state. For analyzing EMG signals of the abdomen, algorithms for energy detection, signal feature extraction, classification and recognition are presented. This paper proposes a system that provides an appropriate an estimation on the health status by evaluating the obesity degree and muscular strength of the abdomen through the system applying these algorithms.

Development and Applications of a Wireless Bioelectric Signal Measurement System on the Electrodes (전극 상의 일체형 무선 생체전기신호 측정 시스템 개발 및 응용)

  • Joo, Se-Gyeong;Kim, Hee-Chan
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-94
    • /
    • 2003
  • Electromyogram (EMG) is the bioelectric signal induced by motor nerves. Analyzing EMG with the movement produced by muscle contraction, we can provide input commands to a computer as a man-machine interface as well as can evaluate the patient's motional abnormality. In this paper, we developed an integrated miniaturized device which acquires and transmits the surface EMG of an interested muscle. Developed system measures $60{\times}40{\times}25mm$, weighs 100g. Using an amplifier circuitry on the electrodes and the radio frequency transmission, the developed system dispenses with the use of cables among the electrodes, amplifier, and the post processing system (personal computer). The wiring used in conventional systems can be obstacle for natural motion and source of motion artifacts. In results, the developed system improves not only the signal-to-noise ration in dynamic EMG measurement, but also the user convenience. We propose a new human-computer interface as well as a dynamic EMG measurement system as a possible application of the developed system.

Effect of Functional Pressure Garments on EMG Response of the Agonist during the Resistance Exercise of the Wrist and Elbow Joint

  • Kim, Ki Hong;Kim, Byung Kwan;Jeong, Hwan Jong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.81-89
    • /
    • 2020
  • The purpose of this study is to investigation the effects of functional compression clothing on muscle function by comparing the iEMG response of muscle during exercise according to the wearing of taping applied functional clothing. Six men in their twenties in Chungcheongnam-do were selected for the study. Resistance exercise was performed by cross-distributing the conditions of wearing and not wearing functional clothing. Resistance exercises for iEMG measurements are biceps curl, wrist curl, reverse wrist curl, kickback and push-up. iEMG measurement muscles were the biceps brachii, triceps brachii, extensor carpi ulnaris, flexor carpi radialis. During biceps curl exercise, the iEMG of triceps brachii, biceps brachii wearing condition was lower than the non-wearing condition. During kickback exercise, the iEMG of triceps brachii, extensor carpi ulnaris wearing condition was lower than the non-wearing condition. During reverse wrist curl exercise, the iEMG of extensor carpi ulnaris wearing condition was lower than the non-wearing condition. During wrist curl exercise, the iEMG of flexsor biceps brachii, carpi radialis wearing condition was lower than the non-wearing condition. During push-up exercise, the iEMG of triceps flexsor biceps brachii, carpi radialis, brachii, biceps brachii non-wearing condition was lower than the wearing condition.

The Virtual Robot Arm Control Method by EMG Pattern Recognition using the Hybrid Neural Network System (혼합형 신경회로망을 이용한 근전도 패턴 분류에 의한 가상 로봇팔 제어 방식)

  • Jung, Kyung-Kwon;Kim, Joo-Woong;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1779-1785
    • /
    • 2006
  • This paper presents a method of virtual robot arm control by EMG pattern recognition using the proposed hybrid system. The proposed hybrid system is composed of the LVQ and the SOFM, and the SOFM is used for the preprocessing of the LVQ. The SOFM converts the high dimensional EMG signals to 2-dimensional data. The EMG measurement system uses three surface electrodes to acquire the EMG signal from operator. Six hand gestures can be classified sufficiently by the proposed hybrid system. Experimental results are presented that show the effectiveness of the virtual robot arm control by the proposed hybrid system based classifier for the recognition of hand gestures from EMG signal patterns.