• Title/Summary/Keyword: EWFCM

Search Result 3, Processing Time 0.023 seconds

Detection of Text Candidate Regions using Region Information-based Genetic Algorithm (영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • This paper proposes a new text candidate region detection method that uses genetic algorithm based on information of the segmented regions. In image segmentation, a classification of the pixels at each color channel and a reclassification of the region-unit for reducing inhomogeneous clusters are performed. EWFCM(Entropy-based Weighted C-Means) algorithm to classify the pixels at each color channel is an improved FCM algorithm added with spatial information, and therefore it removes the meaningless regions like noise. A region-based reclassification based on a similarity between each segmented region of the most inhomogeneous cluster and the other clusters reduces the inhomogeneous clusters more efficiently than pixel- and cluster-based reclassifications. And detecting text candidate regions is performed by genetic algorithm based on energy and variance of the directional edge components, the number, and a size of the segmented regions. The region information-based detection method can singles out semantic text candidate regions more accurately than pixel-based detection method and the detection results will be more useful in recognizing the text regions hereafter. Experiments showed the results of the segmentation and the detection. And it confirmed that the proposed method was superior to the existing methods.

Region-based Multi-level Thresholding for Color Image Segmentation (영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.

A Study of Post-processing Methods of Clustering Algorithm and Classification of the Segmented Regions (클러스터링 알고리즘의 후처리 방안과 분할된 영역들의 분류에 대한 연구)

  • Oh, Jun-Taek;Kim, Bo-Ram;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.7-16
    • /
    • 2009
  • Some clustering algorithms have a problem that an image is over-segmented since both the spatial information between the segmented regions is not considered and the number of the clusters is defined in advance. Therefore, they are difficult to be applied to the applicable fields. This paper proposes the new post-processing methods, a reclassification of the inhomogeneous clusters and a region merging using Baysian algorithm, that improve the segmentation results of the clustering algorithms. The inhomogeneous cluster is firstly selected based on variance and between-class distance and it is then reclassified into the other clusters in the reclassification step. This reclassification is repeated until the optimal number determined by the minimum average within-class distance. And the similar regions are merged using Baysian algorithm based on Kullbeck-Leibler distance between the adjacent regions. So we can effectively solve the over-segmentation problem and the result can be applied to the applicable fields. Finally, we design a classification system for the segmented regions to validate the proposed method. The segmented regions are classified by SVM(Support Vector Machine) using the principal colors and the texture information of the segmented regions. In experiment, the proposed method showed the validity for various real-images and was effectively applied to the designed classification system.