• Title/Summary/Keyword: Earth science curriculum

Search Result 399, Processing Time 0.025 seconds

Curriculum Reform Movement of Science Education in the US: A Case of Earth Science Curriculum

  • Park, Do-Yong
    • Journal of the Korean earth science society
    • /
    • v.27 no.7
    • /
    • pp.730-744
    • /
    • 2006
  • The United States curriculum reform movement has recently started in each area of science education. The initiatives on curriculum reform stem from a notion that the low rate of science curricula offered in schools has been a serious problem. The schools in the United States are not only facing a lack of offerings within science curricula but also low enrollment in science courses, especially in physics, chemistry, and earth science. This trend resulted in low performances on international achievement tests including TIMSS and PISA. This paper introduces the efforts to solve existing problems through curriculum reform; including ChemCom, BioCom, EarthComm, and Active Physics. In this paper, a discussion is presented to show how the curricula can help address the status quo in science education. More specifically, this paper focuses on curriculum reform in high school earth science (EarthComm), providing a closer look at the scope and sequence of the reform movement. EarthComm was chosen because it was released based on the development of the National Science Education Standards (NRC, 1996). Consequently, EarthComm became a curriculum that espoused the visions of the Standards, which has been guiding the reform of the US curriculum. At the end of this paper, two research outcomes of the EarthComm curriculum implementation in schools are discussed in terms of student learning and differences from conventional curricula.

Research on Ways to Improve the 7th National Earth Science I, II Curriculum (제7차 지구과학I, II 교육과정 개선 방안 연구)

  • Lee, Yang-Rak;Kim, Dong-Young;Kwak, Young-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.4
    • /
    • pp.328-336
    • /
    • 2007
  • In this research we conducted a survey on the actual status of the 7th National Earth Science I & II curriculum to explore ways of revising the next Earth Science curriculum for better education. Of the 180 Earth Science teachers, 60% responded to the survey. The domains of the survey consist of (1) the necessity of Earth Science I & II curriculum revision, (2) educational goals, (3) content coverage, (4) level of difficulty and students' interest for Earth Science content, and (5) ways to overcome the crisis of Earth Science education. Majority of the respondents demanded the revision of Earth Science I, II curriculum because of overlapping and repetition of contents among 10th grade science and Earth Science I and overcrowded Earth Science II contents. Based on the survey results, recommendations on how to improve Earth Science I, II curriculum and how to adjust Earth Science contents are suggested. In addition to curriculum improvement, systematic supports are required for Earth science not to be excluded and turned down by the student and the scholastic aptitude test for university admission.

A Comparative Study on the Contents of Secondary Earth Science Curriculum between Mongolia and South Korea (몽골과 한국의 지구과학 교과 내용 비교 연구)

  • Gantumur, Ganchimeg;Kwak, Youngsun;Cha, Heeyong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.6
    • /
    • pp.621-630
    • /
    • 2020
  • This study compared and analyzed the contents of secondary earth science curriculum in Mongolia and South Korea to check the contents of earth science education in both countries and to prepare basic data necessary for future earth science curriculum revisions. The research questions of this study are: first, to understand the changes and current operating conditions of earth science curriculum in both countries, to compare and analyze with other foreign cases, and second, to compare and analyze the contents of earth science and curriculum in both countries. The TIMSS evaluation framework is used to compare and analyze the earth science-related contents included in the science curriculum of middle schools. For analyzing the contents of high school, the contents of NGSS in the United States and the earth science curriculum contents of high schools in South Korea were mixed and the analysis frameworks were created and validated by experts. As a result of the study, countries that follow the Russian-style education system did not organize and operate earth science as an independent science subject, and deal with earth science-related content in the natural geography area of the geography subject. The earth science contents covered in middle school science curriculum in both countries, 18 of the 27 content elements of the TIMSS content analysis framework were matched in Mongolia and 20 in South Korea. In high school curriculum, the contents of earth science in Mongolia were described more briefly and not covered than in South Korea. In particular, the Mongolian geography curriculum dealt with many environmental issues. The emphasis on the operation method of the earth science curriculum in Mongolia and the contents related to the environment can be used as a reference when developing an interdisciplinary integrated curriculum of science and social studies in South Korea.

Comparing the Formats and Content of the State Science Content Standards of Six States in U. S. with Emphasis on Earth Science

  • Kim Chan-Jong;Lee Sun-Kyung;Hwang Eunjee
    • Journal of the Korean earth science society
    • /
    • v.26 no.4
    • /
    • pp.336-346
    • /
    • 2005
  • This study identifies and compares science content standards that are approved by departments of education in six states: California, Connecticut, Michigan, New Jersey, Texas, and Virginia. Specifically, the study examines the goals/visions, the organizing/progression principles, the strands of science content, and earth science content found in the states curriculum standards compared to National Science Education Standards. Although many states followed the recommendations of NSES or Project 2061, the format and content of the state science standards reviewed are very diverse. The diversity seems to reflect the diverse perspectives and needs of the states. The results of this study provide Korean educators and teachers with useful models or examples to incorporate Korean national science curriculum guides into the science curriculum frameworks of their regions or schools.

Contents Analysis of Astronomy in Science Textbooks of Elementary School according to the Changes of the Curriculum (교육과정의 변천에 따른 초등학교 과학과 교과서의 천문에 관한 내용 분석)

  • Choi, Hyun-Dong;Kwon, Chi-Soon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • The purpose of this study is to provide meaningful basic materials for organizing a science curriculum in future by analyzing the status and changes of contents about astronomical phenomena in textbooks according to the changes of the science curriculum of elementary school. A main target of analysis is science textbooks of elementary school in curriculums from 1st to 7th. For the analysis, the analytic frame based on contents in astronomy textbooks of teachers colleges and colleges of education was used. The result of the analysis is as in the following. First, astronomy accounted for average about 7% of all pages of textbooks in all of science curriculums. The 1st educational curriculum had the most learning quantity of 10.40%, and the 6th curriculum had the least quantity of 4.39%. These results show that astronomy was not a small part and was considered important in each science curriculum of elementary school considering that earth science accounted for 17-26% of all pages in elementary school science curriculum. Second, the things that have been dealt with in common in all science curriculums from 1st to 7th of elementary school are the shape of the earth, the rotation and the revolution of the earth, the occurrence of the seasons, the apparent motion of the sun, the status and motion of the moon, the movement of a star, the brightness and distance of a star, constellations, the sun, planets and others. These contents are expected to be dealt with continuously as basic contents to organize astronomy regardless of the changes of curriculum. Third, in science curriculum of elementary school, astronomical phenomena based on life experiences regarding the earth, the moon and the sun are mainly dealt with in the first and the second grade. Contents requiring principles-understanding and research are dealt with in the fifth and sixth grade. These results show that elementary school science curriculum dealing with astronomy reflects the developmental stages of students and considers principle of learning possibility.

An Analysis the Contents Related to a Subject 'Earth and Moon' from Elementary Science Textbooks of the 2009 Revised Curriculum and 2015 Revised Curriculum ('지구와 달' 주제와 관련된 초등학교 2009 개정 과학교과서와 2015 개정 과학교과서 내용 분석)

  • Lim, Cheonghwan;Chae, Donghyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.11 no.3
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to analyze the contents related to a subject 'Earth and Mooon' from elementary science textbooks of the 2009 revised curriculum and elementary science textbooks of the 2015 revised curriculum. For the research, the team selected and analyzed the contents of the 'Earth and Moon' unit in the elementary science textbooks of the 2009 revised curriculum and 2015 revised curriculum. As a result of the research, first, there has been no significant change in achievement standards of the curriculum as the science textbook revised from 2009 curriculum to 2015 curriculum. Second, the two curriculum did not differ much in specific textbook contents statement or development, but they showed much change in presentation of exploration activities in curriculum as well as the specific exploration activities presented in the textbooks. Third, compared to science textbooks of the 2009 revision the 2015 revision used more pictures and illustrations. Forth, there have been few changes related to experimental observation, but the activities to organize the unit in 2015 revision have been strengthened compared to the 2009 revision.

An Analysis of Sequence of Earth Science Content in Elementary School Curriculum in Korea and the U. S. (한국과 미국의 초등 과학 교육과정 지구영역의 학년 간 내용 연계성 분석 연구)

  • Suh, Ye-Won
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.4
    • /
    • pp.356-370
    • /
    • 2008
  • The study aims to explore sequence of earth science content in elementary school science curriculum in Korea and the U.S.. The analysis is focused on a) general content structure of earth science part; b) concept relationship between grades in the specific field of 'geology'; c) longitudinal connection of concepts and content in 'geology.' The findings are as follows. First, earth science curriculum content in Korea is structured according to sub-scientific disciplines centering on not science concepts but topics or inquiry activities whereas the U.S. curricular content is organized through integrative earth science topics with basic concepts and sub-concepts. Second, it is a common feature that basic concepts are interrelated to sub-concepts in all grades in both countries. However, basic concepts are scattered all over the grades, presented in a linear pattern in Korea while those are provided together in 3rd grade and repeated with extended concepts in a spiral structure in the U.S.. Last, it is not clear how concepts and content are longitudinally connected between grades in Korean curriculum. On the contrary, concepts and content in the U.S. curriculum have a strong longitudinal connection between grades with conceptual hierarchy. Such results indicate that Korean elementary school science curriculum would limit students' comprehensive understanding of science concepts through grades. The study suggests Korean science content should strengthen interrelationship among concepts as well as longitudinal connection between grades, in order to achieve the ultimate goal of science education, 'scientific literacy'.

  • PDF

The Trends in the U.S. and Korean Science Curriculum Reforms

  • Kwak, Young-Sun;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.23 no.2
    • /
    • pp.194-206
    • /
    • 2002
  • This article describes the major themes to change in historical and philosophical perspectives of science education that lead the US and Korean science curriculum reform movements since 1957. Inquiry teaching and criticism of teaching science as inquiry in the late 1950s and the 1960s, Science-Technology-Society (STS) Curricula, and Science Literacy and the 1980s science literacy crisis are discussed. In the US, three major curricular projects as responses to the scientific literacy crisis are exemplary such as the Project 2061 sponsored by the American Association for the Advancement of Science, the Project on Scope, Sequence, and Coordination (SS&C) initiated by the National Science Teachers Association (NSTA), and the National Science Education Standards (NSES) published by the National Research Council. To identify how each set of national content standards differ, we compared specific content standards related to the theory of plate tectonics in Earth and Space science in grades 9-12 over the three national standards: Benchmarks of AAAS, NSES of the NRC, and SS&C of the NSTA. Against this historical background of the US science education reform movements, the curriculum reform movements in Korea is briefly discussed. In general, Korean science curriculum reform movements have reflected and resembled the recommendations of the US reform movements. In addition, it is important to note that throughout the history of curriculum revision in Korea, there have been continuing pendulum swings between a theoretical, discipline-centered curriculum and a liberal, humanistic, and student-centered curriculum, which pays more attention to students in terms of their interest and psychological preparedness. In conclusion, the sixth and seventh national science curriculum revisions reflect rather a student-centered movement by reducing technical and sophisticated topics, taking constructivism learning theory into consideration, and adding more STS related topics.

Analysis and Evaluation of the Earth Science Content Relevance in the 7th National Science Curriculum (제7차 과학과 교육과정 지구과학 내용의 적정성 분석 및 평가)

  • Lee, Yang-Rak;Kwak, Young-Sun;Kim, Dong-Young
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.759-770
    • /
    • 2005
  • The purpose of this study is to examine the Earth science content relevance of the 7th national science curriculum. For this purpose, we (1) analyzed science curriculum or content standards of Korea, California, England and Japan, (2) compared science textbooks of Korea and Japan, (3) conducted a nationwide survey to gather opinions from students, teachers, professors and textbook authors about the relevance of the science curriculum and textbooks. According to the results, the Earth science contents of the 7th national science curriculum were not appropriate in terms of the objectives of science curriculum and the needs of students and society. The main reasons include the equal division among physics, chemistry, biology and earth science, iack of connection due to fractionation of units, overly strict application of spiral curriculum, and redundant amount of activities and concepts to cover in the textbook. Major suggestions fir securing the relevance of Earth science contents are as follows: First, the science contents and the size of units at each grade level should be determined according to the students' characteristics, not by equal portion rule. Second, the excessive overlapping and repetition of contents due to the spiral curriculum should be avoided. In addition, the number of activities should be reduced and the quality of required science activities should be improved. Third, to raise students' interest in Earth science, real-life applications and real-world Earth science contents should be emphasized including natural disasters, safety, universe and space exploration, and natural resources. Lastly, considering one of the relevance criteria is feasibility, supports for schools and science teachers are needed to realize the goal of the intended science curriculum.

A Qualitative Case Study of an Exemplary Science Teacher's Earth Systems Education Experiences

  • Lee, Hyon-Yong
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.500-520
    • /
    • 2010
  • The purposes of this case study were (1) to explore one experienced teacher's views on Earth Systems Education and (2) to describe and document the characteristics of the Earth Systems Education (ESE) curriculum provided by an exemplary middle school science teacher, Dr. J. All the essential pieces of evidence were collected from observations, interviews with the experienced teacher and his eighth grade students, informal conversations, document analysis, and field notes. The $NUD^*IST$ for MS Windows was used for an initial data reduction process and to narrow down the focus of an analysis. All transcriptions and written documents were reviewed carefully and repeatedly to find rich evidence through inductive and content analysis. The findings revealed that ESE provided a conceptual focus and theme for organizing his school curriculum. The curriculum offered opportunities for students to learn relevant local topics and to connect the classroom learning to the real world. The curriculum also played an important role in developing students' value and appreciation of Earth systems and concern for the local environment. His instructional strategies were very compatible with recommendations from a constructivist theory. His major teaching methodology and strategies were hands-on learning, authentic activities-based learning, cooperative learning, project-based learning (e.g., mini-projects), and science field trips. With respect to his views about benefits and difficulties associated with ESE, the most important benefit was that the curriculum provided authentic-based, hands-on activities and made connections between students and everyday life experiences. In addition, he believed that it was not difficult to teach using ESE. However, the lack of time devoted to field trips and a lack of suitable resource materials were obstacles to the implementation of the curriculum. Implications for science education and future research are suggested.