• Title/Summary/Keyword: Eccentric%26not

Search Result 10, Processing Time 0.025 seconds

Effects of PNF Technique on Delayed Onset Muscle Soreness After Eccentric Exercise

  • Lee, Su-Young;Yi, Chung-Hwi;Choi, Mun-Suk
    • Physical Therapy Korea
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • This study examined the effects of hold-relax with agonist contraction (HR-AC) on the symptoms of delayed onset muscle soreness (DOMS) induced by intensive eccentric exercise of the non-dominant biceps brachii. Ten men (mean age=26.7 yrs, mean height=172.1 cm, mean weight=66.2 kg) and ten women (mean age=27.4 yrs, mean height=165.9 cm, mean weight=60.7 kg) who had not participated in a regular exercise program for the upper extremities in the previous six months were randomly assigned to one of two experimental groups: the HR-AC group, or the control group. We measured joint range of motion (ROM), maximal voluntary isometric contraction (MVIC), and muscle soreness before eccentric exercise, and 24, 48, and 72 hours after eccentric exercise. The subjects in the HR-AC group received the HR-AC technique in the non-dominant biceps brachii. The HR-AC technique was applied 24 and 48 hours after eccentric exercise. There was no significant difference between the HR-AC and the control group. However, the HR-AC group, compared to the control group, had a significant difference between the time points of the various parameters. Increased ROM (p<.05), decreased muscle soreness (p<.05), and reduced MVIC (p<.05) were found in the HR-AC group after 72 hours. Decreased ROM (p<.05) and MVIC (p<.05), and increased muscle soreness (p<.05) were observed in the control group. These findings suggest that the HR-AC technique effectively reduces muscle soreness and increases ROM 72 hours after eccentric exercise.

  • PDF

Differences in Rectus Femoris Activation Among Skaters Wearing Fabric Speed Skating Suits with Different Levels of Compression

  • Moon, Young-Jin;Song, Joo-Ho;Hwang, Jinny
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Objective: The purpose of this study was to investigate how different levels of compression exerted on the femoral region (known as the power zone) by coated fabric influences the activation and anaerobic capacity of the rectus femoris. Method: Three different levels of compression on the rectus femoris of the participants, namely 0% (normal condition), 9% (downsize), and 18% (downsize), were tested. The material of the fabric used in this study was nonfunctional polyurethane. Surface electromyography test was used to investigate the activation of the rectus femoris, while the isokinetic test (Cybex, $60^{\circ}/sec$) and Wingate test were used to investigate the maximum anaerobic power. Results: The different compression levels (0%, 9%, and 18%) did not improve the strength and anaerobic capacity of the knee extensor. However, knee flexor interfered with activation of the biceps femoris, which is an agonist for flexion, during 18% compression. Conclusion: Compression garments might improve the stretch shortening cycle effect at the time of eccentric contraction and during transition from eccentric to concentric contraction. Therefore, future studies are required to further investigate these findings.

The Effect of Ginseng on Muscle Injury and Inflammation

  • Alvarez, A.I.;De Oliveira, A.C. Cabral;Perez, A.C.;Vila, L.;Ferrando, A.;Prieto, J.G.
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • The effect of Panax ginseng administration in muscle inflammatory process induced after eccentric exercise, that causes myofibrillar disruption, was studied. Changes in lipid peroxidation, inflammation, glycogen levels in muscle and release of myocellular proteins to blood were measured. The analyses were performed immediately after eccentric exercise and over week since this period are necessary for the muscle damage-repair cycle. The ginseng extract (100 mg kg$^{-1}$ ) was orally administered to rats for three months, before the eccentric exercise performance. The results showed the protective role of ginseng against skeletal muscle damage. This effect could be associated with their membrane stabilising capacity since creatine kinase (CK) activity was significantly decreased 96 h post-exercise from 523$\pm$70 to 381$\pm$53 and 120 h post-exercise from 443$\pm$85 to 327$\pm$75 in treated animals. $\beta$-glucuronidase activity, as indicator of inflammation, showed a significant reduction of about 15-25% in soleus, vastus and triceps in these post-exercise times. The lipid peroxidation, measured by malondyaldehyde levels, was significantly decreased in the 24 h post-exercise period in soleus and vastus intermedius muscles and on the recovery period. Finally ginseng administration reduced significantly the decrease of the glycogen levels immediately after exercise and when the regenerative process took place (72-168 h post exercise). Collectively, the results have showed that ginseng did not inhibit the vital inflammatory response process associated with the muscle damage-repair cycle but presumably ameliorate the injury.

A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan (치수효과를 고려한 횡류홴의 작동특성연구)

  • Kim, H.S.;Kim, Youn J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.26-32
    • /
    • 2005
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fall has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control the size and position, is the important cause of performance decrease. In this study, experiments we carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spiral, which is the important factor having an effect on it.

Efficacy of Oral Korean Red-ginseng on sCRP and Soreness after Muscle Damage

  • NA, Hyun-Jong
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.39-45
    • /
    • 2005
  • Objectives: The study investigated the efficacy of oral Korean red-ginseng (RG) on sCRP response mediated by eccentric contraction-induced muscle damage and discussed its mechanism. Methods: Nineteen healthy young subjects (aged 24.4$\pm$2.07 yr) volunteered for this double blind test. They were classified into either the RG group (N=10) or placebo (P) group (N=9) during the 10-d experimental protocol. Blood samples were collected on T1 (baseline), T1 (1h), T2 (1d), T3 (2d) and T4 (3d) after eccentric contraction-induced injury on the seventh day. Statistical analyses were conducted using nonparametric methods (p<0.05). Results: The RG group increased sCRP more than P group and didn't increase soreness peak at T2, not significant. There were no correlations between soreness intensity and sCRP. Oral RG had little efficacy for reducing sCRP at the muscle damage-mediated acute phase; rather, it increased because of its proinflammatory cytokine production. Conclusions: Oral RG could stimulate proinflammatory cytokine production, and occasionally bal-pyo-beob could be helpful for the efficient recovery of muscle injury.

  • PDF

Analytical Study on the Structural Behaviors of Stub Columns Fabricated with HSA800 of High Performance Steel Subjected to Eccentric Loads (편심하중을 받는 고성능강(HSA800) 조립 단주의 구조거동에 관한 해석적 연구)

  • Yoo, Jung Han;Kim, Joo Woo;Yang, Jae Guen;Kang, Joo Won;Lee, Dong Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.453-461
    • /
    • 2014
  • In this study, the stub columns of built-up H-section and square hollow section subjected to eccentrical loads are tested to evaluate the applicability of the structural members with 800MPa high-strength steel (HSA800) on current design specification. Analytical studies of FE model are conducted to validate the test results and then the verified FE models are used for extensive parametric studies for checking up the applicability of current design code. The parameters are width-to-thickness ratios and axial load ratios. From P-M correlations on parameter models, all stub columns with non-compact sections exceed the current design requirements about axial force and flexural strength ratios are sufficiently secured as the axial load ratios are decreased. The built-up hollow sections with slender section model do not satisfy the current design specification about axial force.

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(4) - Velocity Profile(2) (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(4) - 유속분포(2))

  • Park, Chanjun;Sung, Jaeyong;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.242-254
    • /
    • 2016
  • This paper is the forth investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous works, it was concluded that the assumption of the solid rotation might cause serious problems and both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75B plane. Also particle image velocimetry (PIV) measurement at this position showed that the real velocity profile was far from the assumption of ISM evaluation. In this paper, the planar velocity profiles were measure from 1.75B to 6.00B position by PIV and the characteristics were examined according to the valve angles and lifts for further investigations about the effect of the position on the velocity profile. The results show that $26^{\circ}$ valve angle is always an unique exceptional case in all aspects. If the valve angle is $21^{\circ}$ and below, the planar velocity profiles according to the lift and the position are similar to each other, however, the tangential velocity curves along with the radial direction have common tendencies up to $16^{\circ}$ angle. Also the well arranged swirl behaviors are generally observed at the position above 3.00B and the velocity contour lines come closer to the concentric circle as the valve lift increases. In addition, the gradient of tangential velocity along with the radial direction from the swirl center becomes stable and constant as the position goes downstream. Concurrently the velocity gradient is larger to the eccentric direction of the center. In the meantime the tangential velocity curves along with the radial direction are irregular and various at 1.75B, however, they become regular and reach higher level as the evaluation position goes downstream. At this time the curves of 4.50B are the best fitted to the ideal one. On the other hand in an exceptional case, $26^{\circ}$, the velocity contours are very complicated over 6mm valve lift regardless the position and the gradient increases to the opposite direction of the eccentric center. Also, 6.00B is a best fitting position in the geometrical cylinder center base. With respect to the swirl center, the distribution range of centers for 1.75B is different to that for the other positions and the eccentricities of this plane are larger regardless the valve angle. After 1.75B, there is no certain tendency in the center position change according to the valve angle and lift. Additionally, the eccentricities are not sufficiently small to neglecting the effect on ISM measurement.

Design Methods for Eccentrically Loaded Bolt Groups for the Single Plate Connections Considering Sloped Edge Distance (편심전단을 받는 단일판접합부의 경사연단거리를 고려한 볼트군의 설계법)

  • Choi, Sun Kyu;Yoo, Jung Han;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 2014
  • A single plate connection(SPC) consists of a plate welded to the columns and bolts connected to the beam web. The SPC is widely used for a simple shear connection of steel structure because it is easy-to-fabricated, easy-to-installed and economical. The conventional SPC is used for 2 to 12 bolts in a single vertical row. It is designed to limit the plate thickness by bolt diameter to obtain flexible and ductile connections. The design strength for eccentric shear shall be the lesser of the shear strength of bolts or bearing strength of plate and when the design strength is decided by edge distance failure, the results can be very conservative. Although the research on special solution for 'weak-plate/strong-bolt' model with 2 to 4 bolts has been conducted by L. S. Muir, and W. A. Thonton, 2004, study on generalized design procedures did not conduct. This study proposed design procedure for evaluation of the design strength of eccentric shear bolt groups on a single plate connection based on the actual edge distance and the direction of bolt reaction forces by using elastic vector method(EVM) and instantaneous center of rotation method(ICM).

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Implant selection for successful reverse total shoulder arthroplasty

  • Joo Han Oh;Hyeon Jang Jeong;Yoo-Sun Won
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.1
    • /
    • pp.93-106
    • /
    • 2023
  • Reverse total shoulder arthroplasty (RTSA) emerged as a new concept of arthroplasty that does not restore normal anatomy but does restore function. It enables the function of the torn rotator cuff to be performed by the deltoid and shows encouraging clinical outcomes. Since its introduction, various modifications have been designed to improve the outcome of the RTSA. From the original cemented baseplate with peg or keel, a cementless baseplate was designed that could be fixed with central and peripheral screws. In addition, a modular-type glenoid component enabled easier revision options. For the humeral component, the initial design was an inlay type of long stem with cemented fixation. However, loss of bone stock from the cemented stem hindered revision surgery. Therefore, a cementless design was introduced with a firm metaphyseal fixation. Furthermore, to prevent complications such as scapular notching, the concept of lateralization emerged. Lateralization helped to maintain normal shoulder contour and better rotator cuff function for improved external/internal rotation power, but excessive lateralization yielded problems such as subacromial notching. Therefore, for patients with pseudoparalysis or with risk of subacromial notching, a medial eccentric tray option can be used for distalization and reduced lateralization of the center of rotation. In summary, it is important that surgeons understand the characteristics of each implant in the various options for RTSA. Furthermore, through preoperative evaluation of patients, surgeons can choose the implant option that will lead to the best outcomes after RTSA.