• Title/Summary/Keyword: Eddy current brake

Search Result 67, Processing Time 0.028 seconds

Analysis of Multiple Factor of the Eddy Current Brake for Railway Application (철도차량용 와전류 브레이크의 다중 인자 분석)

  • Lee, Chang-Mu;Park, Hyun-Jun;Cho, Sooyoung;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1385-1390
    • /
    • 2015
  • This paper is analysis of multiple factor that should be considered in the design of an eddy current brake used as auxiliary brake system. The eddy current brake is a brake that generates a braking torque in a rotational direction opposite to the direction of the rotor by using a time-varying magnetic flux. The eddy current brake has the advantage of being able to take high current densities because this is used for a short period of time. Also, the eddy current brake is influenced by multiple factor such as number of slots, teeth width, coating thickness, air-gap length and so on. Therefore the eddy current brake was designed for use in railway application in consideration of the operation region and critical parameters.

Design and Analysis of the Eddy Current Brake with the Winding Change

  • Cho, Sooyoung;Liu, Huai-Cong;Lee, Ju;Lee, Chang-Moo;Go, Sung-Chul;Ham, Sang-Hwan;Woo, Jong-Hyuk;Lee, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • This paper is a study of the eddy current brake designed to replace the air brake of railway application. The eddy current brake has the advantage of being able to take a high current density compared to the other application because this brake is used for applying brakes to the rolling stock for a shorter amount of time. Also, this braking system has the merit of being able to take a high current density at low speed rather than at high speed, because the heat generated by the low speed operation is less than that of the high speed operation. This paper also presents a method of improving the output torque of the eddy current brake at low speed operation through a change of the winding as well as the basic design.

Structural Analysis and Optimal Design of Eddy Current Brake Frame (와전류 제동프레임의 구조해석 및 최적설계)

  • 이승철;강신유
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.106-113
    • /
    • 2004
  • The eddy current brake system is a non-contact brake based on the mutual relation between the rail and the frame. Consequently, the accuracy is required in estimating the stress concentration and the deformation of the eddy current brake system. In this paper, the static analysis considering the gravity and the suction force for the deformation and the stress concentration of the main frame of the initially designed eddy current brake system was carried out. The shape of the I-type beam obtained from the optimization was analyzed and compared with the initial model. Also, the initial model was modified based on the optimization model and the result was verified to have the acceptable improvement.

An Experimental Study on Dynamic Characteristics of an Eddy Current Brake System (와전류를 이용한 제동장치의 실험적 동특성 연구)

  • Yi, Mi-seon;Kwag, Dong-gi;Bae, Jae-sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.39-43
    • /
    • 2009
  • Eddy currents are generated when a moving conductor is exposed to a stationary magnetic field, or vice-versa. These currents create their own magnetic field, causing a repulsive force between the magnetic material and the conductor. Using this concept, a magnetic brake system can be established by the permanent magnets and a conductive material. In this paper, the eddy current effects on a magnetic brake system which consists of 2 pairs of magnets and a conductor are investigated by using a electromagnetic software, and the results of simulations are compared with experiments. It can be concluded how the arrangement of magnets effects on the dynamic characteristics of the eddy current brake system.

  • PDF

Technology development trend of the track brake and eddy current brake for high speed train (고속전철용 트랙제동 및 와전류제동장치 기술동향)

  • Choi Kweon-hee;Chang Dae-sung;Kim Chul-keun;Han Dong-in;Jeon young-wook
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.264-268
    • /
    • 2005
  • Most of the train brakes depends on friction between wheels and tracks. This requires braking force reduced in order not to cause wheel slides since the friction decreases as the train speed increases and consequently results in extension of braking distance. The braking system called 'Linear eddy current brake' or simply' Eddy current brake' is a braking system for making a brake independent from friction, which consists in creating electromagnet by coiling around shoes attached. to bogies; having the shoes above the tracks approached to the tracks upon acknowledgement of a braking command; and authorizing braking force that is irrelevant to friction through magnetic repulsion between electromagnet attached to the tracks and train set by the use of the electromagnet's magnet field characteristics. An electromagnetic attraction braking system that consists in pressing pole shoes attached to bogies against the tracks by using electromagnet's attraction force is called 'Electromagnetic track brake' or simply 'Track brake'. This paper has been prepared in purpose of studying technological tendencies of the eddy current brake and the track brake so that it can be utilized as fundamental data for commissioning Korean high-speed trains with the eddy current brake hereafter.

  • PDF

Optimal Array Design of the Permanent Magnet in an Eddy Current Brake (와전류 브레이크의 영구자석배열 최적설계)

  • Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.658-663
    • /
    • 2009
  • Eddy current is usually generated in the material with high conductivity by time-varying source such as AC current and also is induced by the moving source with relative velocity. The contactless magnetic brake makes use of the braking force from the eddy current generated by the moving source and currently used for the secondary brakes of heavy trucks, buses and rail vehicles. This study aims to design the magnetization pattern of the eddy current brake system of a permanent magnet type where the design aim is to maximize the braking force. The analysis of brake systems is based on the two-dimensional finite element analysis. We use the sequential linear programming as the optimizer and the adjoint variable method is applied for the sensitivity analysis.

Design and Analysis of Eddy-Current Braker for High-Speed Train (고속전철 와전류 제동장치 설계와 특성해석 및 실험)

  • 정수진;강도현;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.659-663
    • /
    • 2002
  • The brake systems of high-speed train are to be equipped with three different brake systems, such as regenerative brake with regenerative feedback in driving car, a pneumatic disc brake, and non-contact linear eddy-current brake(ECB). The regenerative brake and the pneumatic disc brake are acting on the wheels. Their achievable braking force depends on the adhesive coefficient, which is influenced by the weather condition and speed, between the wheel and The linear eddy current brake gets an economical solution in the high-speed train because of the independence of the adhesive coefficient, no maintenance needed. and the good control characteristics. The braking force and the normal force of ECB for korean high-speed train are analysed by the 2D FEM(Finite Element Method). Finally the normal force is compared with the experiential values to verify the analysis.

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

Novel Claw Pole Eddy Current Load for Testing DC Counter Rotating Motor - Part II: Design and Modeling

  • Kanzi, Khalil;Roozbehani, Sam;Dehafarin, Abolfazl;Kanzi, Majid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.412-418
    • /
    • 2012
  • Eddy current brakes are electromechanical devices used as variable mechanical loads for testing electrical machines. Accurate modeling of eddy current loss is an important t factor for optimum design of eddy brake systems. In this second part, we propose novel formulations of eddy current loss in novel claw-pole eddy brake system. The proposed model for eddy current loss in novel claw-pole eddy brake system depends on the size of the claw poles. Also, in this paper, the flux density is measured by using the magnetic circuit of the novel claw pole. The model results are compared with experimental results and they are found to be in good agreement.

Optimal torque control of noncontact type eddy current brake system (비접촉식 와전류형 제동 장치의 최적 토오크 제어)

  • 이갑진;박기환;류제하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • A contactless eddy current type braking system is developed to take advantages of the recent brake system which uses hydraulic force can show high efficiency in a certain velocity region, but not in a high velocity region, and has initial response delay time and pressure build-up time which make stopping distance longer. These are the limits of mechanical brake system of a contact type, which makes a concept brake system required. So, in this paper, the contactless brake system .of a inductive current type is chosen instead of hydraulic brake system. This brake system can be used almost forever for being no wear and contributed to lightening weight of a vehicle. Besides, the contactless brake system can be used as that of electric or solar car with anti-lock brake system. The analysis of induced electromotive force and braking torque obtained with theoretical approximate model, the design of a braking system and a nonlinear controller, and the results of simulation of the ABS, experiment are included.

  • PDF