• Title/Summary/Keyword: Edge Computing

Search Result 480, Processing Time 0.021 seconds

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

Analysis of Open Source Edge Computing Platforms: Architecture, Features, and Comparison (오픈 소스 엣지 컴퓨팅 플랫폼 분석: 구조, 특징, 비교)

  • Lim, Huhnkuk;Lee, Heejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.985-992
    • /
    • 2020
  • Edge computing is a technology that can prepare for a new era of cloud computing. Edge computing is not a remote data center where data is processed and computed, but low-latency/high-speed computing is realized by adding computing power and data processing power to the edge side close to an access point such as a terminal device or a gateway. It is possible. The types of edge computing include mobile edge computing, fog computing, and cloudlet computing. In this article, we describes existing open source platforms for implementing edge computing nodes. By presenting and comparing the structure, features of open source edge platforms, it is possible to acquire knowledge required to select the best edge platform for industrial engineers who want to build an edge node using an actual open source edge computing platform.

A Privacy-preserving Image Retrieval Scheme in Edge Computing Environment

  • Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.450-470
    • /
    • 2023
  • Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.

Edge Computing Market Trends and Application Scenarios (엣지 컴퓨팅 시장 동향 및 산업별 적용 사례)

  • Shin, S.S.;Min, D.H.;Ahn, J.Y.;Kim, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • Edge computing, which is computing on the edge of the network, is becoming a market value as a means of overcoming the fear of communication disconnection and delay reduction, which are the technical weaknesses of cloud computing. Edge computing is continuously expanding applications in various applications such as safety industry, smart factories, autonomous vehicles, mobile communications, and AR/VR. Looking at edge computing trends from Microsoft, IBM, HPE, and Dell EMC, current edge computing must be understood as an integral binding technology and not as a simple complement to the cloud. This paper examines market trends in edge computing and analyzes the impact of edge computing on major related industries.

A Performance Comparison of Parallel Programming Models on Edge Devices (엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구)

  • Dukyun Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

A Cloud-based Big Data System for Performance Comparison of Edge Computing (Edge Computing 성능 비교를 위한 Cloud 기반 빅데이터 시스템 구축 방안)

  • Lim, Hwan-Hee;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.5-6
    • /
    • 2019
  • Edge Computing에서 발생하는 데이터 분석에 대한 알고리즘의 성능 평가나 검증은 필수적이다. 이러한 평가 및 검증을 위해서는 비교 가능한 데이터가 필요하다. 본 논문에서는 Edge Computing에서 발생하는 데이터에 대한 분석 결과 및 Computing Resource에 대한 성능평가를 위해 Cloud 기반의 빅 데이터 분석시스템을 구축한다. Edge Computing 비교분석 빅 데이터 시스템은 실제 IoT 노드에서 Edge Computing을 수행할 때와 유사한 환경을 Cloud 상에 구축하고 연구되는 Edge Computing 알고리즘을 Data Analysis Cluster Container에 탑재해 분석을 시행한다. 그리고 분석 결과와 Computing Resource 사용률 데이터를 기존 IoT 노드 Edge Computing 데이터와 비교하여 개선점을 도출하는 것이 본 논문의 목표이다.

  • PDF

Flow Prediction-Based Dynamic Clustering Method for Traffic Distribution in Edge Computing (엣지 컴퓨팅에서 트래픽 분산을 위한 흐름 예측 기반 동적 클러스터링 기법)

  • Lee, Chang Woo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1136-1140
    • /
    • 2022
  • This paper is a method for efficient traffic prediction in mobile edge computing, where many studies have recently been conducted. For distributed processing in mobile edge computing, tasks offloading from each mobile edge must be processed within the limited computing power of the edge. As a result, in the mobile nodes, it is necessary to efficiently select the surrounding edge server in consideration of performance dynamically. This paper aims to suggest the efficient clustering method by selecting edges in a cloud environment and predicting mobile traffic. Then, our dynamic clustering method is to reduce offloading overload to the edge server when offloading required by mobile terminals affects the performance of the edge server compared with the existing offloading schemes.

Range Segmentation of Dynamic Offloading (RSDO) Algorithm by Correlation for Edge Computing

  • Kang, Jieun;Kim, Svetlana;Kim, Jae-Ho;Sung, Nak-Myoung;Yoon, Yong-Ik
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.905-917
    • /
    • 2021
  • In recent years, edge computing technology consists of several Internet of Things (IoT) devices with embedded sensors that have improved significantly for monitoring, detection, and management in an environment where big data is commercialized. The main focus of edge computing is data optimization or task offloading due to data and task-intensive application development. However, existing offloading approaches do not consider correlations and associations between data and tasks involving edge computing. The extent of collaborative offloading segmented without considering the interaction between data and task can lead to data loss and delays when moving from edge to edge. This article proposes a range segmentation of dynamic offloading (RSDO) algorithm that isolates the offload range and collaborative edge node around the edge node function to address the offloading issue.The RSDO algorithm groups highly correlated data and tasks according to the cause of the overload and dynamically distributes offloading ranges according to the state of cooperating nodes. The segmentation improves the overall performance of edge nodes, balances edge computing, and solves data loss and average latency.

Implementation of SDN testbed for performance analysis of Edge Computing (Edge Computing의 성능 분석을 위한 SDN 테스트베드 구축 방안)

  • Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.5-6
    • /
    • 2018
  • Edge Computing의 성능 분석을 위해 SDN 테스트 베드를 구축하는 방안을 제안한다. Edge Computing 환경에서 연구한 알고리즘들을 실증적 성능 테스트하기 위해 테스트베드를 구축하였다. Raspberry-Pi를 이용해 SDN Switch를 구현하였고, Edge단의 노드는 테스트를 위해 노트북을 연결해 인터넷이 되는지 확인하였다. Edge Computing 환경은 수 많은 노드를 연결해 테스트해야 하며 따라서 SDN 환경이 적절하다. 본 논문에서는 SDN에 대해서 알아보고 Raspberry-Pi를 이용한 테스트 베드 구축 방안에 대해 소개하고자 한다.

  • PDF

Trends in Edge Computing Technology (엣지 컴퓨팅 기술 동향)

  • Hong, J.H.;Lee, K.C.;Lee, S.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.78-87
    • /
    • 2020
  • With the evolution of the Internet of Things (IoT), a computing paradigm shift from cloud to edge computing is rapidly taking place to effectively manage the rapidly increasing volume of data generated by various IoT devices. Edge computing is computing that occurs at or near the physical location of a user or data source. Placing computing services closer to these locations allows users to benefit from faster and more reliable services, and enterprises can take advantage of the flexibility of hybrid cloud computing. This paper describes the concept and main benefits of edge computing and presents the trends and future prospects for edge computing technology.