• 제목/요약/키워드: Edge Loading

검색결과 269건 처리시간 0.023초

Effects of damping on the parametric instability behaviour of plates under localized edge loading (compression or tension)

  • Deolasi, P.J.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제3권3호
    • /
    • pp.229-244
    • /
    • 1995
  • The parametric instability behaviour of a plate subjected to localized in-plane compressive or tensile periodic edge loading is studied, considering the effects of damping into the system. Different edge loading cases have been considered. Damping has been introduced in the form of proportional damping. Dynamic instability behaviour under compressive or tensile periodic edge loading shows that the instability regions are influenced by the load band width and its location on the edge. The effects of damping on the instability regions show that there is a critical value of dynamic load factor beyond which the plate becomes dynamically unstable. The critical dynamic load factor increases as damping increases. Damping generally reduces the widths of the instability regions.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Effect of loading rate on mechanical behavior of SRC shearwalls

  • Esaki, Fumiya;Ono, Masayuki
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.201-212
    • /
    • 2001
  • In order to investigate the effect of the loading rate on the mechanical behavior of SRC shearwalls, we conducted the lateral loading tests on the 1/3 scale model shearwalls whose edge columns were reinforced by H-shaped steel. The specimens were subjected to the reversed cyclic lateral load under a variable axial load. The two types of loading rate, 0.01 cm/sec for the static loading and 1 cm/sec for the dynamic loading were adopted. The failure mode in all specimens was the sliding shear of the in-filled wall panel. The edge columns did not fail in shear. The initial lateral stiffness and lateral load carrying capacity of the shearwalls subjected to the dynamic loading were about 10% larger than those subjected to the static loading. The effects of the arrangement of the H-shaped steel on the lateral load carrying capacity and the lateral load-displacement hysteresis response were not significant.

콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증 (Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads)

  • 남정희;김우석;김기현;김연복
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping

  • Udar, Ratnakar. S.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.481-500
    • /
    • 2007
  • The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane harmonic edge loading $P(t)=P_s+P_d\;{\cos}{\Omega}t$ is investigated. The present work deals with the problem of the occurrence of combination resonances in contrast to simple resonances in parametrically excited doubly curved panels. Analytical expressions for the instability regions are obtained at ${\Omega}={\omega}_m+{\omega}_n$, (${\Omega}$ is the excitation frequency and ${\omega}_m$ and ${\omega}_n$ are the natural frequencies of the system) by using the method of multiple scales. It is shown that, besides the principal instability region at ${\Omega}=2{\omega}_1$, where ${\omega}_1$ is the fundamental frequency, other cases of ${\Omega}={\omega}_m+{\omega}_n$, related to other modes, can be of major importance and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and the static load factor on dynamic instability behavior of simply supported doubly curved panels are studied. The results show that under localized edge loading, combination resonance zones are as important as simple resonance zones. The effects of damping show that there is a finite critical value of the dynamic load factor for each instability region below which the curved panels cannot become dynamically unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own natural frequency, may be of considerable interest in vibration testing of actual structures.

Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.275-290
    • /
    • 2018
  • The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

합성형교의 외측강성 영향 평가 (Evaluation on the Edge Stiffening Affect of Composite Girder Bridge)

  • 성기태;박영훈;이승용
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.179-186
    • /
    • 2008
  • 강성비를 이용한 합성형교 외측강성 영향 평가의 타당성을 평가하기 위하여 동일 강성비에서 거더 간격 변화에 따른 수정계수를 해석적으로 분석하였으며, 강성비, 하중 형태, 거더 간격이 수정계수에 미치는 영향을 평가하였다. 현장재하시험 및 기존 설계법의 수정계수와 본 연구에서 분석된 수정계수를 비교한 결과 강성비를 이용한 외측강성 영향 평가가 가능한 것으로 판단된다.

Simplified approach for the evaluation of critical stresses in concrete pavement

  • Vishwakarma, Rameshwar J.;Ingle, Ramakant K.
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.389-396
    • /
    • 2017
  • Concrete pavements are subjected to traffic and environmental loadings. Repetitive type of such loading cause fatigue distress which leads to failure by forming cracks in pavement. Fatigue life of concrete pavement is calculated from the stress ratio (i.e. the ratio of applied flexural stress to the flexural strength of concrete). For the correct estimation of fatigue life, it is necessary to determine the maximum flexural tensile stress developed for practical loading conditions. Portland cement association PCA (1984) and Indian road congress IRC 58 (2015) has given charts and tables to determine maximum edge stresses for particular loading and subgrade conditions. It is difficult to determine maximum stresses for intermediate loading and subgrade conditions. The main purpose of this study is to simplify the analysis of rigid pavement without compromising the accuracy. Equations proposed for determination of maximum flexural tensile stress of pavement are verified by finite element analysis.

제형파형강판의 지압 거동에 영향을 미치는 기하학적 인자에 관한 연구 (A Study on the Geometric Parameters that Influence the Trapezoidally Corrugated Webs Under Partial Edge Loading)

  • 최용주;이종원;신철호;이학은
    • 한국강구조학회 논문집
    • /
    • 제18권1호
    • /
    • pp.81-91
    • /
    • 2006
  • 파형 강판은 파형 형상으로 가공한 강판으로 교량, 건축물, 암거 등의 구조물에 많이 사용된다. 파형강판을 이용한 거더의 구조물 적용시 국부적인 면내 압축하중에 의해 크리플링현상이 발생할 수 있는데 높은 면외방향의 강성을 갖는 파형강판의 특성 때문에 보강재를 사용하지 않는 경우가 많이 있고 파형형상에 따라 지압하중의 경계조건이 달라진다. 몇 연구자들이 제형파형강판의 지압강도에 대한 연구를 하였으나 파형형상이 지압강도에 미치는 영향이 크게 고려되지 않았다. 따라서 본 연구에서는 이에 따른 영향을 유한 요소해석법을 통하여 여러 가지 파형형상에 대한 변수해석을 하고 지압강도를 복부판 내하력과 플랜지 내하력으로 나누어 파형 형상과 지압강도와의 상관관계를 파악하였다.

전단력을 받는 선설치 앵커볼트의 콘크리트 파열파괴강도 평가 연구 (A Study on the Concrete Breakout Capacity of CIP Anchor Bolts under Shear Loading)

  • 박용명;전명희;최명국;김철환;김인기
    • 한국강구조학회 논문집
    • /
    • 제24권2호
    • /
    • pp.207-215
    • /
    • 2012
  • 전단하중을 받는 앵커볼트의 설계에 $45^{\circ}$ 콘파괴 이론이 그동안 적용되어 왔으나, 2,000년 이후부터 CCD(Concrete Capacity Design) 방법이 새로운 설계법으로 도입되었다. 그러나, 본 방법은 주로 소형 앵커볼트에 대한 실험 결과에 근거한 관계로 앵커볼트의 직경이 50mm 이하인 경우에 한해 적용이 허용되고 있다. 따라서 큰 연단거리를 갖는 중대형 앵커볼트에 대한 합리적인 콘크리트 파열파괴강도식의 도출이 필요한 실정이다. 본 연구에서는 M56 선설치 단일 앵커볼트로 연단거리 350mm에 대해 콘크리트 파열파괴강도 평가를 위해 4개의 시험체에 대해 실험을 수행하였다. 그리고, 본 실험 결과와 타 연구의 실험 결과를 종합하여 연단거리 750mm까지의 큰 연단거리에 대해 새로운 전단파괴강도식을 제안하였다.