• Title/Summary/Keyword: Effective time interval

Search Result 310, Processing Time 0.031 seconds

New Stability Conditions for Positive Time-Varying Discrete Interval System with Interval Time-Varying Delay Time (구간 시변 지연시간을 갖는 양의 시변 이산 구간 시스템의 새로운 안정 조건)

  • Han, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.501-507
    • /
    • 2014
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, new sufficient conditions for asymptotic stability of the interval positive time-varying linear discrete-time systems with time-varying delay in states are considered. The considered time-varying delay time has an interval-like bound which has minimum and maximum delay time. The proposed conditions are established by using a solution bound of the Lyapunov equation and they are expressed by simple inequalities which do not require any complex numerical algorithms. An example is given to illustrate that the new conditions are simple and effective in checking stability for interval positive time-varying discrete systems.

A Comparative Analysis of Failure Rate, Effective Failure Rate and Equivalent Failure Rate of A System Composed of Identical Parallel Units (병렬구조 시스템의 고장률, 유효(有效) 고장률과 대등(對等) 고장률의 비교분석)

  • Cho, Kyung-Hwan
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.256-261
    • /
    • 2015
  • The aim of this paper is to present some issues to be discussed in relation to failure rate of a system that has identical parallel units. It is assumed that Time-to-Failure of each unit has the same exponential distribution and all units are repairable with a periodic maintenance of time interval T. Effective failure rate is widely recommended for nonrepairable systems as the reciprocal of MTTF but it should not be applied for repairable systems if delayed maintenance is used. And equivalent failure rate of an imaginary system is taken into consideration, the reliability value of which is the same as that of the redundant system when time interval T is given. With a numerical example, failure rate, effective failure rate, and equivalent failure rate of the redundant system are analyzed comparatively.

Stability Condition for Discrete Interval Time-Varying System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연시간을 갖는 이산 시변 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.504-509
    • /
    • 2022
  • In this paper, we deal with the stability condition of linear time-varying interval discrete systems with time-varying delays and unstructured uncertainty. For the time-varying interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new result is derived by the form of simple inequality based on Lyapunov stability condition and has the advantage of being more effective in checking stability. Furthermore, the proposed condition is very comprehensive, powerful and inclusive the previously published conditions of various linear discrete systems, and can be expressed by the terms of magnitudes of the time-varying delay time and uncertainty, and bounds of interval matrices. The superiority of the new condition is shown in the derivation, and the usefulness and advantage of the proposed condition are examined through numerical example.

A Simple Static Overmodulaton Method by using the concept of effective time (유효시간 개념을 적용한 간편한 정적 과변조 기법)

  • Park, Sun-Young;Lim, Dong-Chan;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.461-462
    • /
    • 2011
  • In this paper, a static overmodulation method using the effective time to control the overmodulation is proposed. The effective time is derived from actual switching time interval. The proposed method reduces the complex operations such as complicated gating time. The experimental results have been simulated in MATLAB/SIMULINK.

  • PDF

Rainstorm Tracking Using Statistical Analysis Method (통계적 기법을 이용한 국지성집중호우의 이동경로 분석)

  • Kim Sooyoung;Nam Woo-Sung;Heo Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.194-198
    • /
    • 2005
  • Although the rainstorm causes local damage on large scale, it is difficult to predict the movement of the rainstorm exactly. In order to reduce the rainstorm damage of the rainstorm, it is necessary to analyze the path of the rainstorm using various statistical methods. In addition, efficient time interval of rainfall observation for the analysis of the rainstorm movement can be derived by applying various statistical methods to rainfall data. In this study, the rainstorm tracking using statistical method is performed for various types of rainfall data. For the tracking of the rainstorm, the methods of temporal distribution, inclined Plane equations, and cross correlation were applied for various types of data including electromagnetic rainfall gauge data and AWS data. The speed and direction of each method were compared with those of real rainfall movement. In addition, the effective time interval of rainfall observation for the analysis of the rainstorm movement was also investigated for the selected time intervals 10, 20, 30, 40, 50, and 60 minutes. As a result, the absolute relative errors of the method of inclined plane equations are smaller than those of other methods in case of electromagnetic rainfall gauges data. The absolute relative errors of the method of cross correlation are smaller than those of other methods in case of AWS data. The absolute relative errors of 30 minutes or less than 30 minutes are smaller than those of other time intervals.

  • PDF

Mixing matrix estimation method for dual-channel time-frequency overlapped signals based on interval probability

  • Liu, Zhipeng;Li, Lichun;Zheng, Ziru
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.658-669
    • /
    • 2019
  • For dual-channel time-frequency (TF) overlapped signals with low sparsity in underdetermined blind source separation (UBSS), this paper proposes an effective method based on interval probability to estimate and expand the types of mixing matrices. First, the detection of TF single-source points (TF-SSP) is used to improve the TF sparsity of each source. For more distinguishability, as the ratios of the coefficients from different columns of the mixing matrix are close, a local peak-detection mechanism based on interval probability (LPIP) is proposed. LPIP utilizes uniform subintervals to optimize and classify the TF coefficient ratios of the detected TF-SSP effectively in the case of a high level of TF overlap among sources and reduces the TF interference points and redundant signal features greatly to enhance the estimation accuracy. The simulation results show that under both noiseless and noisy cases, the proposed method performs better than the selected mainstream traditional methods, has good robustness, and has low algorithm complexity.

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.

Consensus Control for Switched Multi-agent Systems with Interval Time-varying Delays (구간 시변 지연을 고려한 전환 멀티-에이전트 시스템에 대한 일치 제어)

  • Park, M.J.;Kwon, O.M.;Lee, S.M.;Park, Ju-H.;Cha, E.J.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.401-406
    • /
    • 2012
  • This paper considers multi-agent systems with interval time-varying delays and switching interconnection topology. By construction of a suitable Lyapunov-Krasovskii's functional, new delay-dependent consensus control conditions for the systems are established in terms of LMIs (Linear Matrix Inequalities) which can be easily solved by various effective optimization algorithms. One numerical example is given to illustrate the effectiveness of the proposed methods.

Determination of the Optimal Aggregation Interval Size of Individual Vehicle Travel Times Collected by DSRC in Interrupted Traffic Flow Section of National Highway (국도 단속류 구간에서 DSRC를 활용하여 수집한 개별차량 통행시간의 최적 수집 간격 결정 연구)

  • PARK, Hyunsuk;KIM, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.63-78
    • /
    • 2017
  • The purpose of this study is to determine the optimal aggregation interval to increase the reliability when estimating representative value of individual vehicle travel time collected by DSRC equipment in interrupted traffic flow section in National Highway. For this, we use the bimodal asymmetric distribution data, which is the distribution of the most representative individual vehicle travel time collected in the interrupted traffic flow section, and estimate the MSE(Mean Square Error) according to the variation of the aggregation interval of individual vehicle travel time, and determine the optimal aggregation interval. The estimation equation for the MSE estimation utilizes the maximum estimation error equation of t-distribution that can be used in asymmetric distribution. For the analysis of optimal aggregation interval size, the aggregation interval size of individual vehicle travel time was only 3 minutes or more apart from the aggregation interval size of 1-2 minutes in which the collection of data was normally lost due to the signal stop in the interrupted traffic flow section. The aggregation interval that causes the missing part in the data collection causes another error in the missing data correction process and is excluded. As a result, the optimal aggregation interval for the minimum MSE was 3~5 minutes. Considering both the efficiency of the system operation and the improvement of the reliability of calculation of the travel time, it is effective to operate the basic aggregation interval as 5 minutes as usual and to reduce the aggregation interval to 3 minutes in case of congestion.

Factors Delaying Hospital Arrival Time after Stroke (뇌졸중 환자들의 지연도착시간에 관한 요인들)

  • Song Yung Sun;Lee Su Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1075-1078
    • /
    • 2002
  • Objective: The management for the stroke should ,given as soon as possible to be effect. But Patients with stroke symptoms commonly delay many hours before seeking medical attention. We evaluated the factors which are related to the time of hospital arrival after acute stroke. Method: Data were obtained from 317 patients admitted to our hospital within 72 hours of stroke onset. We assessed demographic variables, stoke subtype. referral routes. history of previous stroke, level of consciousness, distance from the place where stroke occurred to hospital, and the time interval between onset of stroke and arrival at the hospital. Results: Mean patient age was 65.99±9.57 years. The mean time interval between onset of stroke and hospital arrival was 17.26±18.69 hours and 128 (40.38%) patients arrived within 6 hours. The patients whoes stoke subtype was infarction, who arrived our hospital by way of other hospital, who had no suffered from previous stroke and who showed no impairement of consciousness was arrived at the hospital late(p<0.05). Conclusion: The majority of patients arrive at the hospital after prolonged delays for multiple reasons, and patients with milder symptoms, for whom treatment might be more effective, were less likely to arrive in time for therapy. Our study suggest that effective education about stroke to the patients and public would be highly necessary.