• Title/Summary/Keyword: Elastic Constant

Search Result 464, Processing Time 0.03 seconds

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.

Effect of Reinforcements on Dynamic Elastic Modulus of Polyethylene Matrix Composite Materials (폴리에틸렌기지 복합재료의 동적탄성계수에 대한 강화재의 효과)

  • 김경섭;정현규;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.1-4
    • /
    • 1999
  • The attenuation coefficients of SiC particle reinforced low-density polyethylene (LDPE) matrix composites were measured by pulse echo method and dynamic elastic measure method with varying the volume fraction of SiC particle ranged from 0% to 40% and the size of SiC particles ranged from 0.8$\mu$m to 48$\mu$m. The SiCp/LDPE composites were fabricated with the melt injection process and the fabricated composites showed almost full density above 99% up to 40vo1% SiCp reinforcements. The attenuation constant of LDPE measured by dynamic elastic constant had same result with that measured by pulse echo method, but the attenuation constant of SiCp/LDPE measured by dynamic elastic constant did not have same result with that measured by pulse echo method.

  • PDF

Measurement of Dynamic Elastic Modulus of Foil Material by ESPI and Sonic Resonance Testing (ESPI와 음향공진법을 이용한 Foil 재료의 동적탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Ahmad Akhlaq
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.914-917
    • /
    • 2005
  • The paper proposes a new sonic resonance test for a dynamic elastic constant measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI)and Euler-Bernoulli equation. Previous measurement technique of dynamic elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The TA-ESPI dynamic elastic constant measurement technique is able to give high accurate elastic modulus of materials through a simple experiment and analysis.

  • PDF

A Study on the elastic properties of coated layers and the changes of microstructure in plasma spray coating of $Al_2$O$_3$-TiO$_2$ ceramics (Al$_2$O$_3$-TiO$_2$세라믹의 플라즈마 용사과정에서 미세구조의 변화와 용사코팅층의 탄성에 대한 연구)

  • 이형근;김대훈;황선효;안병국;김병희;서동수;안명구
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.109-118
    • /
    • 1996
  • Al$_2$O$_3$-TiO$_2$powders of six different compositions were plasma-sprayed on Ti substrate. The spray powders and the spray coated layers were analysed and compared using SEM and X-RD. The elastic properties (specific elastic constant and damping coefficient) of the coated specimens were measured in order to select the optimum composition range of ceramics for use in a speaker diaphragm. A correlation between the microstructure and elastic properties was also investigated. When $Al_2$O$_3$powders with 0- 13% TiO$_2$were plasma sprayed, the coated layers were composed of metastable y-Al$_2$O$_3$with small amount of $\alpha$-Al$_2$O$_3$and the content of $\alpha$-Al$_2$O$_3$was increased with TiO$_2$content. Specific elastic constant was rapidly increased with 2 and 13% TiO$_2$addition to $Al_2$O$_3$. The internal damping was nearly unchanged with TiO$_2$content The specific elastic constant seemed to be dependent on the content of $\alpha$-Al$_2$O$_3$in the coated layer.

  • PDF

Determination of Elastic Modulus by Time Average ESPI and Euler-Bernoulli Equation (Time Average ESPI와 Euler-Bernoulli 방정식에 의한 탄성계수 측정)

  • Kim, Koung-Suk;Lee, Hang-Seo;Kang, Young-June;Kang, Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.69-74
    • /
    • 2007
  • The paper proposes a new sonic resonance test for a elastic modulus measurement which is based on time-average electronic speckle pattern interferometry(TA-ESPI) and Euler-Bernoulli equation. Previous measurement technique of elastic constant has the limitation of application for thin film or polymer material because contact to specimen affects the result. TA-ESPI has been developed as a non-contact optical measurement technique which can visualize resonance vibration mode shapes with whole-field. The maximum vibration amplitude at each vibration mode shape is a clue to find the resonance frequencies. The dynamic elastic constant of test material can be easily estimated from Euler-Bernoulli equation using the measured resonance frequencies. The proposed technique is able to give high accurate elastic modulus of materials through a simple experiment set up and analysis.

The effect of splay elastic constant on the transmittance of fringe-field switching using a liquid crystal with positive dielectric anisotropy (유전율 이방성이 양인 액정을 사용한 FFS 모드에서의 스플레이 탄성상수에 따른 투과율 연구)

  • Kim, Tae-Hyun;Lee, Ji-Youn;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.518-519
    • /
    • 2005
  • We have studied the transmittance of fringe-filed switching(FFS) using a liquid crystal with positive dielectric anisotropy. Generally, FFS having positive dielectric anisotropy has less transmittance than FFS using negative dielectric anisotropy. FFS mode transmittance depends on horizontal director deformation, however fringe filed is composed of vertical and horizontal field. Vertical field in the middle of electrode suppresses the transmittance of FFS mode, especially when we use positive one. So, it is important to prevent the LC director from the effect of vertical field. We changed the splay elastic constant and checked the transmittance. The transmittance of FFS having positive dielectric anisotropy was improved. Less tilted LC directors improve the transmittance of FFS using positive dielectric anisotropy. We can improve the transmittance by using LC which have high splay elastic constant when another LC properties are equal.

  • PDF

Correlation between the temperature and elastic properties of the light guide plate in edge-lit light-emitting-diode backlights

  • Kim, Jae-Hyun;Kim, Tae-Hyun;Lee, Byung-Woo;Seo, Jae-Seok;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • The correlation between the temporal and spatial variations of the elastic constant and temperature change was examined for a light guide plate (LGP) adopted in the edge-lit light-emitting-diode backlight for mobile applications, using the micro- Brillouin light scattering method. The velocity of sound and the elastic constant $C_{11}$ of an LGP made from bisphenol-A polycarbonate (PC) were investigated as functions of temperature, time, and position on the LGP. The temporal variation of $C_{11}$ exhibited an exponential decay, while the spatial variation of $C_{11}$ reflected the temperature distribution on the LGP. The glass transition temperature of the PC LGP was found to be located at $155^{\circ}C$. The result showed that systematic transformation between the elastic property and the temperature is possible and that the temperature distribution on the bulk LGP can be accurately probed via the present experiment method, without using any special temperature measurement equipment.

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.

Carbon nanotube-doped liquid crystal cells

  • Huang, Chi-Yen;Pan, Hung-Chi;Hsieh, Chia-Ting
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.426-429
    • /
    • 2006
  • We investigated the electrooptical properties of a carbon nanotube (CNT)-doped nematic liquid crystal (LC) cell. Experimental results reveal that the doped CNTs influence the elastic constant of LC-CNT dispersion. Using a small amount of CNT dopant, the rise time of the LC cell is nearly invariant; the threshold voltage of the cell increases due to the increase in the elastic constant of LC-CNT dispersion. At a higher CNT concentration, the marked increase in the dielectric anisotropy of LC-CNT dispersion markedly decreases the rise time and threshold voltage of the LC cell. The fall time of this cell decreases with increasing CNT concentration due to the increase in elastic constant and the slight increase in viscosity of LC-CNT dispersion. The rise time and the fall time of the LC cell are decreased simultaneously when the LC host is doped with a moderate amount of CNT dopant.

  • PDF

Non-Destructive Evaluation of $Al_2O_3/AC8A$ Composite by Ultrasonic Measurement (초음파법에 의한 $Al_2O_3/AC8A$ 복합재료의 특성평가)

  • 박영철;이규창;이준현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.816-825
    • /
    • 1994
  • The purpose of this study is to develop the non-destructive material evaluation method of aluminum alloy base metal matrix composite(MMC) by ultrasonics. Five aluminum base MMC specimens were fabricated in which the fractional ratios of fiber were changed from 0% to 31%. Relations among acoustic properties, microstructural features and elastic constant were compared. The ultrasonic velocity method was useful for nondestructive elastic constant measurement of composite materials, since the method had as same accuracy as conventional strain measurement method. Furthermore, velocity, attenuation and backscattering behaviors for each specimen also related to fractional ratio of fiber and these relations could utilize ultrasonic non-destructive evaluation of fiber structure in MMC.