• Title/Summary/Keyword: Elastin

Search Result 111, Processing Time 0.032 seconds

The Effects of Aging and Atherosclerosis on Elastin of Human Aortas; Quantitative Analysis of Elastin-Content and SEM Analysis of Elastolysis

  • Song, Seh-Hoon;Roach, Margot R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.591-600
    • /
    • 1998
  • We have examined 24 human aortas aged $46{\sim}90$ years obtained from autopsies. Most exhibited gross lesions of some degree on the lumenal surface. Using hot alkaline treatment (0.1 N NaOH) at $70{\sim}75^{\circ}C$ for 5 hours, we extracted and quantitated elastin portions from the aortic wall in 3 different segments (UTA=upper thoracic aorta, LTA=lower thoracic aorta, AA=abdominal aorta). We have found UTA had $70.6%{\pm}1.39$ (SE), LTA $61.6%{\pm}1.94$ (SE), AA $49.2%{\pm}1.84$ (SE) elastin respectively based on wet weight. The differences between segments are statistically significant (p<0.05, 0.025). However, there is no significant correlation between the age of the patients and the relative amounts of elastin in each segment. We have also observed the structure of elastin in the internal elastic lamina (IEL) and tunica media (TM) with SEM (scanning electron microscopy), and discovered that the IEL shows various forms of elastolysis- broken sheets, discontinuity, various sizes of lumps, vesicles, and possible newly formed elastin in the aortic lesions (Song and Roach submitted to YMJ). From these studies we conclude that elastin in the aortic wall remains well balanced quantitatively with age in spite of evidence suggesting vigorous degeneration and regeneration in the atherosclerotic lesions.

  • PDF

Temporomandibular joint ankylosis in Williams syndrome patient: an insight on the function of elastin in temporomandibular joint disorder

  • Woo, Jaeman;Lee, Choi-Ryang;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.3
    • /
    • pp.178-181
    • /
    • 2022
  • Williams-Beuren syndrome (WS) is a rare genetic disorder that results from microdeletion at chromosome 7, which harbors the elastin gene. Clinical findings include arteriopathy, aortic stenosis, hypertension, and laxities and contractures in different joints throughout the body. While many components of the temporomandibular joint (TMJ) normally contain elastin, there are few reports on TMJ manifestations of WS. This study reports a TMJ ankylosis case in a WS patient and shares insight on a possible link between development of TMJ ankylosis and elastin deficiency in WS patients. A WS patient presented with bilateral TMJ ankylosis and was successfully treated with TMJ gap arthroplasty. Hypermobility of TMJ and lack of elastin in retrodiscal tissue can induce anterior disc displacement without reduction. Due to lack of elastin, which has a significant role in the compensatory and reparatory mechanism of TMJ, WS patients might be prone to TMJ ankylosis.

The Durability of Elastin-Incorporated Collagen Matrix for Dermal Substitute in Vitro Condition (In vitro 환경에서 엘라스틴을 혼합한 콜라겐 진피 지지체의 내구성)

  • Lew, Dae Hyun;Hong, Jong Won;Tark, Kwan Chul
    • Archives of Plastic Surgery
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Purpose: Since the report of artificial dermis manufacturing method using collagen by Yannas in 1980, collagen has been effectively used as dermal substitute with its merits such as, lower antigeneicity, controllable biodegradation rate, and minimal inflammatory cytotoxic properties in the dermal tissue engineering field. However, weak mechanical durability was the main drawback of collagen dermal substitute. To improve its stability, mechanical or chemical cross-linking was used. Despite of such process, its clinical use was restricted due to weak durability. To improve the durability of collagen matrix, we designed elastin-incorporated collagen matrix and compared its durability with conventional collagen matrix. Methods: 15mm diameter with 4mm thick collagen dermal matrix was made according to Yannas protocol by mixing 0.5% bovine collagen and chondroitin-6-sulfate followed by degassing, freeze drying, dehydrodermal cross-linking and chemical cross-linking procedure. In elastin incorporated collagen matrix, same procedure was performed by mixing elastin to previous collagen matrix in 4:1 ratio(collagen 80% elastin 20%). In comparison of the two dermal matrix in vitro tests, matrix contracture rate, strain, tensile strength, was measured and stiffness was calculated from comparative analysis. Results: In terms of matrix contracture, the elastin-incorperated added collagen dermis matrix showed 1.2 times more contraction compared to conventional collagen matrix. However, tensile strength showed 1.6 times and stiffness showed 1.6 times increase in elastin-incorporated matrix. Conclusion: Elastin incorperated collagen matrix manufactured by our team showed increased durability due to improvement in tensile strength and stiffness compared to previous collagen matrix($Integra^{(R)}$).

Application of 630-nm and 850-nm Light-emitting Diodes and Microcurrent to Accelerate Collagen and Elastin Deposition in Porcine Skin

  • Kwon, Tae-Rin;Moon, Dong Wook;Kim, Jungwook;Kim, Hyoung Jun;Lee, Seong Jae;Han, Yunhee;Dan, Hee Won;Chi, Sang Hoon;Seong, Hwan Mo;Kim, Hee Jung;Lim, Guei-Sam;Lee, Jungkwan
    • Medical Lasers
    • /
    • v.10 no.2
    • /
    • pp.96-105
    • /
    • 2021
  • Background and Objectives Skin aging is reportedly associated with regulation in collagen and elastin synthesis. This study investigated the potential of combining light-emitting diode (LED) treatments using a 630-nm and 850-nm LED with simultaneous microcurrent application. Materials and Methods The dorsal skin of female pigs was treated with a home-use device. We examined the treatment effects using photography, thermocamera, microscopic pathology, and histological examination to determine the mechanism of action, efficacy, and safety of the procedure. A histological observation was performed using hematoxylin and eosin, Masson's trichrome, Victoria blue, and immunohistochemical staining. We also used the Sircol soluble collagen and elastin assay kit to measure the amounts of collagen and elastin in the porcine back skin tissue after 2 and 6 weeks. Results Evaluation by visual inspection and devices showed no skin damage or heat-induced injury at the treatment site. Histological staining revealed that accurate treatment of the targeted dermis layer effectively enhanced collagen and elastin deposition. Collagen type I, a protein defined by immunohistochemical staining, was overexpressed in the early stages of weeks 2 and 6. Combined therapy findings showed the superior capability of the 630-nm and 850-nm LED procedures to induce collagen; in contrast, elastin induction was more pronounced after microcurrent treatments. Conclusion The home-use LED device, comprising a combination of 630-nm and 850-nm LEDs and microcurrent, is safe and can be used as an adjunctive treatment for self-administered facial rejuvenation.

Development of an Agar Diffusion Method to Measure Elastase Inhibition Activity Using Elastin-Congo Red

  • Jung Kyung-Hwan;Kim Hyun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1320-1324
    • /
    • 2006
  • The pancreatic and neutrophil elastases are associated with several illnesses including lung and vascular diseases, various cancers, and pancreatitis. The development of a potent and specific inhibitor to the elastases could lead to new therapies. In this study, an agar diffusion method was modified to include a substrate-dye conjugate (Elastin-Congo red) as a substrate of elastase and an indicator of elastase inhibitory activity. The Elastin-Congo red agar plates consisted of 0.1 % Elastin-Congo red and 2.5% agar. The elastase and elastase inhibitors were simultaneously loaded into wells, ultimately resulting in halo formations in which the halo diameter decreased as the concentration of elastase inhibitor increased. The concentration of elastase inhibitor in the samples, therefore, was inversely proportional to the halo diameters. This simplified method provided an excellent correlation with the standard microplate technique, which uses a chromogenic substrate. The concentration of elastase inhibitor obtained from the culture supernatant of a recombinant elastase inhibitor produced by the yeast Pichia pastoris was easily determined. This study has established a simple modified and inexpensive agar diffusion method that is potentially useful for the identification, quantification, and screening of new elastase inhibitors.

Flow Characteristics of Elastin-Like Polypeptide(ELP) Coated Packed Bed (온도 감응성 폴리펩티드로 표면 처리된 충전층의 유동 특성)

  • Kim, Duck-Jong;Lee, Jong-Hwan;Park, Sang-Jin;Hyun, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3187-3190
    • /
    • 2007
  • Elastin-Like polypeptide (ELP) composed of elastin-based repeating units is an artificial biomaterial which is biocompatible and non-immunogenic. ELP shows a characteristic inverse phase transition between hydrophobic and hydrophilic phase by external stimuli such as salt, pH and temperature. In this study, ELP coated PS (polystyrene) beads are packed in tubing and the thermo -responsive flow characteristics of the packed bed are investigated. Preliminary test results show that the control of the fluid flow can be achieved by using the temperature driven phase transition effect of the ELP coated beads in a microchannel.

  • PDF

Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts

  • Hwang, Su Jin;Kim, Su Hwan;Seo, Woo-Young;Jeong, Yelin;Shin, Min Cheol;Ryu, Dongryeol;Lee, Sang Bae;Choi, Young Jin;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.329-334
    • /
    • 2021
  • Collagen type I is the most abundant form of collagen in human tissues, and is composed of two identical α-1 type I chains and an α-2 type I chain organized in a triple helical structure. A previous study has shown that human collagen α-2 type I (hCOL1A2) promotes collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). However, the biological effects of human collagen α-1 type I (hCOL1A1) on various skin properties have not been investigated. Here, we isolate and identify the hCOL1A1-collagen effective domain (CED) which promotes collagen type I synthesis. Recombinant hCOL1A1-CED effectively induces cell proliferation and collagen biosynthesis in HDFs, as well as increased cell migration and elastin production. Based on these results, hCOL1A1-CED may be explored further for its potential use as a preventative agent against skin aging.

Human collagen alpha-2 type I stimulates collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs)

  • Hwang, Su Jin;Ha, Geun-Hyoung;Seo, Woo-Young;Kim, Chung Kwon;Kim, KyeongJin;Lee, Sang Bae
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.539-544
    • /
    • 2020
  • Skin aging appears to be the result of overlapping intrinsic (including genetic and hormonal factors) and extrinsic (external environment including chronic light exposure, chemicals, and toxins) processes. These factors cause decreases in the synthesis of collagen type I and elastin in fibroblasts and increases in the melanin in melanocytes. Collagen Type I is the most abundant type of collagen and is a major structural protein in human body tissues. In previous studies, many products containing collagen derived from land and marine animals as well as other sources have been used for a wide range of purposes in cosmetics and food. However, to our knowledge, the effects of human collagen-derived peptides on improvements in skin condition have not been investigated. Here we isolate and identify the domain of a human COL1A2-derived protein which promotes fibroblast cell proliferation and collagen type I synthesis. This human COL 1A2-derived peptide enhances wound healing and elastin production. Finally, the human collagen alpha-2 type I-derived peptide (SMM) ameliorates collagen type I synthesis, cell proliferation, cell migration, and elastin synthesis, supporting a significant anti-wrinkle effect. Collectively, these results demonstrate that human collagen alpha-2 type I-derived peptides is practically accessible in both cosmetics and food, with the goal of improving skin condition.

Isolation, Purification and Characterization of Antioxidative Bioactive Elastin Peptides from Poultry Skin

  • Nadalian, Mehdi;Kamaruzaman, Nurkhuzaiah;Yusop, Mohd Shakir Mohamad;Babji, Abdul Salam;Yusop, Salma Mohamad
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.966-979
    • /
    • 2019
  • Muscle-based by-products are often undervalued although commonly reported having a high amount of natural bioactive peptides. In this study, elastin was isolated from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The sequential identification of the peptide was done by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic amino acids (Val and Pro) in the peptide sequences could potentially contribute to the high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative potential from poultry skin specifically from elastin is evident and can be explored to be used in many applications such as health and pharmaceutical purposes.

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E.;Prieto, Susana;Testera, Ana M.;Arias, Francisco J.;Alonso, Matilde;Mano, Joao F.;Rodriguez-Cabello, Jose Carlos
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2015
  • A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.