• Title, Summary, Keyword: Electric vehicle

Search Result 1,910, Processing Time 0.056 seconds

A Carge-discharge System of a Solar-Electric Vehicle (태양광-전기자동차의 충전·방전 시스템에 관한 연구)

  • Sim, Hansub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • Design of an electric power system on the solar-electric vehicle is very important because sunlight intensity is changed by weather conditions and road environments. Power output of solar module on the vehicle being changed by unsteady sunlight intensity. In this paper, design method of an electric power system are proposed to generate steady electric power output. The test results shows the electric power system are effective because the solar-electric vehicle have steady driving speed under unsteady sunlight conditions.

Influence Evaluation of Electric Vehicle Load on Distribution Systems by the penetration rate of Electric Vehicle (전기자동차 보급 전망에 따른 배전계통에서의 영향 평가)

  • Kim, Chul-Woo;Han, Seung-Ho;Song, Taek-Ho;Jeong, Moon-Gyu
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.256-257
    • /
    • 2011
  • The development for Eco-friendly cars has been expanded as the concern about environmental pollution and a rise in gas prices. The Electric Vehicle(EV) and Plug in Hybrid Electric Vehicle(PHEV) are generally connected on distribution power systems to charge the traction batteries. The growing number of EV/PHEVs could have a effect on distribution power systems and result in overload of power utilities and power quality problems. In order to reduce the adverse effect on distribution power systems, the influence of electric vehicle loads should be evaluated. In this paper, the influence of electric vehicle loads is evaluated by using OpenDSS(Open Source Distribution System Simulator) according to the penetration rate of electric vehicle.

  • PDF

VEHICLE ELECTRIC POWER SIMULATOR FOR OPTIMIZING THE ELECTRIC CHARGING SYSTEM

  • Lee, Wootaik;Sunwoo, MyoungHo
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.157-164
    • /
    • 2001
  • The vehicle electric power system, which consists of two major components: a generator and a battery, which have to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight is required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study. The simulator can be utilized to determine the optimal capacities of generators and batteries. To improve the expandability and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC. Empirical electrical models of various generators and batteries, and the structure of the simulation program are presented. For executing the vehicle electric power simulator, data of engine speed profile and electric loads of a vehicle are required, and these data are obtained from real driving conditions. In order to improve the accuracy of the simulator, numerous driving data of a vehicle are logged and analyzed.

  • PDF

Reliability Verification of Battery Disconnecting Unit (BDU 신뢰성 검증)

  • Yoon, Hye-Lim;Ryu, Haeng-Soo;Ji-Hong;Hong-Tae, Park
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

Fuzzy Logic Speed Control Stability Improvement of Lightweight Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail.K;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2010
  • To be satisfied with complex load condition of electric vehicle, fuzzy logic control (FLC) is applied to improve speed response and system robust performance of induction traction machine based on indirect rotor field orientation control. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels of lightweight electric vehicle by means the vehicle used for passenger transportation. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. Our electric vehicle fuzzy inference system control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency and the robustness of the proposed control with good performances compared with the traditional PI speed control, the FLC induction traction machine presents not only good steady characteristic, but with no overshoot too.

A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis (경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구)

  • Kim, Si-Yeon;Hwang, Jae-Dong;Lim, Jong-Hun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.

A Study of the Electric Vehicle Industry and Policy Implications (전기자동차 산업 현황 및 정책적 대응방향)

  • Chun, Hwang-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.471-473
    • /
    • 2013
  • This paper is analyzing the situation of the electric vehicle Industry and draw the policy implications to promote electric vehicle industry. Major automobile makers as GM, BMW, Nissan, Audi produce various electric vehicles. But in recent times, only few electric vehicle sold in the world. So, many automobile makers gave up the production of electric vehicles. and the fuel-cell vehicle will replace the electric vehicle as a environment car in the future. We should take the build up of eco system between vehicle makers and the small parts companies, construction of battery charging infrastructure, promotion of standardization activities, and the government's support to revive the electric vehicle industry.

  • PDF

Inband Signaling on the Control Pilot of Electric Vehicle Supply Equipment (전기자동차 충전스탠드의 제어파일럿 신호를 이용한 대역 내 통신 방식)

  • Kim, Chul-Woo;Kim, Sang-Beom;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2019-2020
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. Control Pilot is an electric signal generated by EVSE and is transmitted to the electric vehicle by a vehicle coupler and a contact. The duty cycle of control pilot determines the maximum current to be drawn by electric vehicle. When the duty cycle is 5%, it is indicated that digital communication is needed. This paper deals with the data format and definition about communication scheduling through the inband signal on the control pilot of EVSE.

  • PDF

HEV: A Review (하이브리드 전기 자동차(HEV) 기술동향)

  • Nah, Do-Baek;Shin, Hyo-Soon
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • Hybrid Electric Vehicle(HEV) and Plug-in Hybrid Electric Vehicle(PHEV) will replace Conventional Gasolene Engine Vehicle at a rapid rate to eliminate emission gases and improve fuel economy. This review describes Fuzzy Logic Control strategy and Optimization for Parallel Hybrid Electric Vehicle. Recent progress on Electric Motor and Li-ion Battery for HEV and PHEV are given. Analysis on competitiveness of Korean HEV and PHEV technology based on the number of papers published and patents registered are also performed.

A Study on Electromagnetic Emission of HEV's Gasoline and Electric Mode (HEV 차량내 내연기관과 전기모터 모드의 전자파 방사에 대한 고찰)

  • Kim, Sungbum;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.12-19
    • /
    • 2018
  • This paper deals with the broadband electromagnetic emission test of a hybrid electric vehicle. The hybrid electric vehicle's powertrain system consists of an internal combustion engine and an EV traction motor. Depending on the SOC of the traction battery, these modes change automatically in the running state. The Korea electromagnetic compatibility regulations of KMVSS and UN WP.29 stipulated the evaluation method of hybrid electric vehicles. This study analyzes and compares two test results: internal combustion and electric motor mode. Some problems of test conditions are described and an improved test method is proposed for measuring broadband emissions of a hybrid electric vehicle. As a result, we expect this paper to be used as a consideration for improvement when test specifications are revised in the future.