• 제목/요약/키워드: Electric vehicle

검색결과 2,177건 처리시간 0.026초

하이브리드 전기 자동차(HEV) 기술동향 (HEV: A Review)

  • 나도백;신효순
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.39-50
    • /
    • 2010
  • 하이브리드 전기자동차(HEV: Hybrid Electric Vehicle)와 플러그 인 하이브리드 전기자동차 (PHEV: Plug-in Hybrid Electric Vehicle)는 화석연료 배출가스를 제거하고 연료경제성을 개선하기 위하여 급속한 속도로 전통적 가솔린 엔진 자동차를 대체할 것이다. 이 리뷰는 병렬 하이브리드 전기자동차를 위한 퍼지로직 제어전략과 최적화를 설명하였다. HEV와 PHEV를 위한 전기모터와 리튬이온 배터리의 최근 발전을 기술하였으며 국제적 학술지에 출판된 논문수와 등록된 특허 수에 근거한 한국의 HEV와 PHEV 기술의 경쟁력 분석도 수행하였다.

Design of Model-based VCU Software for Driving Performance Optimization of Electric Vehicle

  • Changkyu Lee;Youngho Koo;Kwangnam Park;Gwanhyung Kim
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.351-358
    • /
    • 2023
  • This study designed a model-based Vehicle Control Unit (VCU) software for electric vehicles. Electric vehicles have transitioned from conventional powertrains (e.g., engines and transmissions) to electric powertrains. The primary role of the VCU is to determine the optimal torque for driving control. This decision is based on the driver's power request and current road conditions. The determined torque is then transmitted to the electric drive system, which includes motors and controllers. The VCU employs an Artificial Neural Network (ANN) and calibrated reference torque to enhance the electric vehicle's performance. The designed VCU software further refines the final reference torque by comparing the control logic with the torque calculation functions and ANN-generated reference torque. Vehicle tests confirmed the effective optimization of vehicle performance using the model-based VCU software, which includes an ANN.

전기차 충전 인프라와 전력망 간의 통신 상호운용성 연구 (Communication Interoperability of Electric Uehicle Charging Infrastructure and Grid Network)

  • 주승환;이일호;송상훈
    • 디지털산업정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.15-25
    • /
    • 2018
  • ISO/IEC 15118 is a standard for communications and services for electric vehicle charging infrastructure. Although this standard deals only with data communication between an electric vehicle and a charge station, communication with the outside is essential for establishing an authentication system for vehicle certification and V2G service for electric power transmission. In this study, it was designed to verify the information of electric car charging infrastructure in electric power system through communication link between ISO/IEC 15118 electric vehicle model and IEC 61850 standard MMS protocol. This is demonstrated in the field so that the electric vehicle communication data is linked with the micro grid management system. This could be used as an element technology in other distributed power sources as well as electric cars in the future.

전기 자동차 파워트레인의 모델링 및 동특성 분석 (Modeling and Dynamic Analysis for Electric Vehicle Powertrain Systems)

  • 박광민;이성훈;진성호;곽상신
    • 전자공학회논문지SC
    • /
    • 제48권6호
    • /
    • pp.71-81
    • /
    • 2011
  • 일반적인 내연기관 자동차와는 달리, 전기자동차는 파워트레인을 구성하는 배터리, 인버터, 모터 등의 전기 동력 시스템들이 차량의 주행성능과 동역학 특성에 직접적인 영향을 준다. 따라서 전기 차량의 최종 운동 및 동특성을 예측하기 위해서, 기계 및 전기전자 복합 시스템을 세부적으로 모델링하고 이를 통한 전체 파워트레인의 해석이 필요하다. 본 논문에서는 전기자동차의 최종 출력 성능을 예측하고 분석하기 위한 전기자동차의 파워트레인 시스템의 동적 모델을 유도하였다. 전기적인 신호로부터 최종 기계 동력 시스템으로 전달되는 입출력 변수의 상관관계를 수학적으로 모델링하여 개발하였다. 또한, 전기자동차의 동특성을 시뮬레이션 할 수 있는 기준모델을 Matlab/Simulink 플랫폼 기반으로 개발하였으며, 이를 이용하여 유도된 수학적 분석 모델을 검증하였다. 이를 통하여 속도, 가속도, 추진력 등의 주요 차량 주행성능을 비교 분석하였다.

전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구 (The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking)

  • 조수연;서동현;박준성;신외경
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

공공장소에서의 전기 자동차 충전기 디자인 콘셉트 제안 (Proposed concept design for electric vehicle charger in public places)

  • 진아영
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.13-19
    • /
    • 2022
  • Recently, electric vehicles are gaining popularity among many domestic and foreign users due to their eco-friendly advantages of reducing fine dust and environmental greenhouse gases. As the demand and supply of electric vehicles increase, the demand for electric vehicle charging infrastructure is also growing together. Many users are experiencing inconvenience due to poor charging infrastructure, which makes them hesitant to buy electric vehicles. Research on the user experience of chargers in apartment complexes, a common residential type in Korea, is being conducted somewhat, but research on the design of electric vehicle charging devices in public places is insufficient. The purpose of this research is to identify user requirements and complaints based on the product design of the electric vehicle charger in public places and propose a new electric vehicle product design concept that meets the requirements. The research method understood the charging base and status of electric vehicles in public places through literature research and examined and analyzed the characteristics and problems of product design cases that improved the charging problem of electric vehicles recently released in the market. It is intended to identify and analyze the problems of the charging device product design through user interviews, a qualitative research method, and based on this, it is intended to propose a user-centered product design concept that improves major complaints.

지하도로 내 전기차 화재 대응지침 구축 (Establishment of the Fire Response Guideline for Electric Vehicleson Underground Roads)

  • 강동효;조성우;김해;유호인;윤일수
    • 한국ITS학회 논문지
    • /
    • 제22권5호
    • /
    • pp.92-107
    • /
    • 2023
  • 최근 전기차의 지속적인 보급 증가와 함께 전기차 화재사고 역시 급증하는 추세를 보이고 있다. 전기차 화재는 내연기관 차량의 화재에 비해 장기간 지속되며, 2차적인 폭발의 위험 및 다량의 연기를 발생시키는 문제들을 지니고 있는 사고이다. 특히, 반밀폐 공간인 지하도로 내에서의 전기차 화재는 기존 전기차 화재의 문제를 증폭시킬 우려가 있다. 하지만 현재 국내에는 지하도로 내부에서 발생하는 전기차 화재에 대한 관련 대응지침이 부재하다. 이에 본 연구에서는 일반인 대상 설문조사를 통해 화재사고에 대한 인지 수준을 확인하였으며, 지하도로 내 전기차 화재와 관련된 이해관계자들로부터 전기차 화재 특성 및 주요 고려 사항을 도출하였다. 이를 통해 지하도로 내 전기차 화재 대응지침을 구축하였다.

지능형 자율주행 제어 알고리즘 개발 및 시험차량 성능평가 (Development of an Intelligent Autonomous Control Algorithm and Test Vehicle Performance Verification)

  • 김원균;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.861-866
    • /
    • 2007
  • This paper presents development of a vehicle lateral and longitudinal control for autonomous driving control and test results obtained using an electric vehicle. Sliding control theory has been used to develop a vehicle speed and distance control algorithm. The longitudinal control algorithm that maintains safety and comfort of the vehicle consists of a cruise and STOP&GO control depending on traffic conditions. Desired steering angle is determined through the lateral position error and the yaw angle error based on preview optimal control. Motor control inputs have been directly derived from the sliding control law. The performance of the autonomous driving control which is integrated with a lateral and longitudinal control is investigated by computer simulations and driving test using an electric vehicle. Electric vehicle system consists of DC driving motor, an electric power steering system, main controller (Autobox)

  • PDF

전기자동차 배터리 역물류 프로세스 연구 (Reverse Logistics Process for Electric Vehicle Batteries)

  • 서동민;김용수;김현수
    • 산업경영시스템학회지
    • /
    • 제34권3호
    • /
    • pp.57-70
    • /
    • 2011
  • To address global climate change, various governments are investing in electric vehicle research and, especially in Korea, the application of electric vehicles to public transportation. The lithium batteries used in electric vehicles typically have an expected life cycle of 2-5 years. If electric vehicles become commonly used, they will generate many discarded batteries that could be harmful to the environment. Additionally, lithium batteries are potentially explosive and should be handled appropriately. Thus, reverse logistics issues are involved in handling expired batteries efficiently and safely. Reverse logistics includes the collection, recycling, remanufacturing, and discarding of waste. This study developed a reverse logistics process for electric vehicle batteries after analyzing the as-is process for lead and lithium batteries. It also developed possible disposal regulations for electric vehicle batteries based on current laws regarding conventional batteries.

주행 사이클을 고려한 IPMSM의 효율 및 출력 밀도 개선으로 경량 전기 자동차의 주행거리 연장 (Range Extension of Light-Duty Electric Vehicle Improving Efficiency and Power Density of IPMSM Considering Driving Cycle)

  • 김동민;정영훈;임명섭;심재한;홍정표
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2197-2210
    • /
    • 2016
  • Recently, the trend of zero emissions has increased in automotive engineering because of environmental problems and regulations. Therefore, the development of battery electric vehicles (EVs), hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs), and fuel cell electric vehicles (FCEVs) has been mainstreamed. In particular, for light-duty electric vehicles, improvement in electric motor performance is directly linked to driving range and driving performance. In this paper, using an improved design for the interior permanent magnet synchronous motor (IPMSM), the EV driving range for the light-duty EV was extended. In the electromagnetic design process, a 2D finite element method (FEM) was used. Furthermore, to consider mechanical stress, ANSYS Workbench was adopted. To conduct a vehicle simulation, the vehicle was modeled to include an electric motor model, energy storage model, and regenerative braking. From these results, using the advanced vehicle simulator (ADVISOR) based on MATLAB Simulink, a vehicle simulation was performed, and the effects of the improved design were described.